【Linux后端服务器开发】IP协议
目录
一、IP协议概述
二、协议头格式
三、网段划分
四、IP地址的数量限制
五、路由
六、分片和组装
一、IP协议概述
主机:配有IP地址,但是不进行路由控制的设备
路由器:即配有IP地址,又能进行路由控制
节点:主机和路由器的总称
IP:将数据从A主机跨网络传输到B主机的能力,IP = 目标网络 + 目标主机
路径选择中,目标IP决定了我们的路径该怎么走(先确定目标网络,再确定目标主机)
二、协议头格式
- 4位版本号:version,指定IP协议的版本,对于IPv4来说就是4
- 4位首部长度:header length,IP头部的长度是多少个32bit,也就是length * 4字节数
- 8位服务类型:Type of Service,3位优先权字段(已放弃),4位TOS字段,1位保留字字段(0)。4位TOS字段分别表示最小延时、最大吞吐量、最高可靠性、最小成本,这四者相互冲突,只能选择一个。对于ssh/telnet这样的应用程序,最小延时比较重要,对于ftp这样的程序,最大吞吐量比较重要
- 16位总长度:total length,IP数据报整体占多少个字节
- 16位标识:id,唯一的标识主机发送的报文,如果IP报文在数据链路层被分开了,那么每一片里面这个id都是相同的
- 3位标志字段:第一个保留,第二个位置置1表示禁止分片,这时候如果报文长度超过MTU,IP模块就会丢弃报文,第三个位置表示“更多分片”,如果分片了的话,最后一个分片置1,其他都是0,类似一个结束标志
- 13位片偏移:framegament offset,是分片相对于原始IP报文开始处的偏移,其实就是表示当前分片在原始报文中的哪个位置,实际偏移的字节数是这个值*8得到的,因此除了最后一个报文之外,其他报文的长度必须是8的整数倍(否则报文就不连续了)
- 8位生存时间:Time To Live,TTL,数据报到达目的地的最大报文跳跃次数,一般是64,每经过一次路由,TTL -= 1,一直减到0还没有到达就丢弃了,这个字段主要防止出现路由循环
- 8位协议:表示上层协议的类型
- 16位头部检验和:使用CRC进行校验,来鉴别头部是否损坏
- 32位源地址和32位目的地址:表示发送端和接收端IP地址
- 选项字段:不定长,最多40字节
如何将报头和有效载荷分离?4位首部长度,基本单位是4字节,标准长度是20字节,首部长度范围[20, 60],标准长度的4位首部长度 0101,通过16位总长度减去4位首部长度,即可得到数据内容,即可进行报头和有效载荷的分离。
三、网段划分
IP地址分为两个部分,网络号和主机号
- 网络号:保证相互连接的两个网段具有不同的标识
- 主机号:同一网段内,主机之间具有相互的网络号,但是必须有不同的主机号
- 不同的子网其实就是把网络号相同的主机放在一起
- 如果在子网中新增一台主机,则这个主机的网络号和这个子网的网络号一致,但是主机号不能和子网中的其他主机重复
通过合理设置主机号和网络号,就可以保证在相互连接的网络中,每台主机的IP地址都不相同。
那么问题来了,手动管理子网中的IP,是一个相当麻烦的事情,怎么解决呢?有一种技术叫做DHCP,能够自动给子网内新增主机节点分配IP地址,避免了手动管理IP的不便。一般的路由器都带有DHCP功能,因此路由器也可以看做一个DHCP服务器。
过去曾经提出过一种划分网络号和主机号的方案,把所有IP地址分为五类,如下图TCPIP:
- A类:0.0.0.0 ~ 127.255.255.255
- B类:128.0.0.0 ~ 191.255.255.255
- C类:192.0.0.0 ~ 223.255.255.255
- D类:224.0.0.0 ~ 239.255.255.255
- E类:240.0.0.0 ~ 247.255.255.255
随着Internet的飞速发展,这种划分方案的局限性很快就显现出来,大多数组织都申请B类网络地址,导致B类地址很快就分配完了,而A类却浪费了大量地址。
针对以上情况提出的新的划分方案,称为CIDR(Classless Interdomain Routing):
- 引入了一个额外的子网掩码(subnet mask)来区分网络号和主机号
- 子网掩码也是一个32位的正整数,通常用一串“0”来结尾
- 将IP地址和子网掩码“按位与”操作,得到的结果就是网络号
- 网络号和主机号的划分与这个IP地址是A类、B类还是C类无关
一般在一个子网中,管理子网中IP的设备是路由器,目标网络、子网掩码、子网中的主机都是由路由器管理的,目标网络和子网掩码是在路由器内配置的。
四、IP地址的数量限制
我们知道,IP地址(IPv4)是一个4字节32位的正整数,那么一共只有2的32次方个IP地址,大概是43亿左右,而TCP/IP协议规定,每个主机都需要有一个IP地址。
这意味着,一共只有43亿台主机接入网络吗?
实际上,由于一些特殊的IP地址的存在,数量远远不足43亿,另外IP地址并非是按照主机台数来划分的,而是每一个网卡都需要配置一个或多个IP地址。
CIDR在一定程度上缓解了IP地址不够用的问题(提高了利用率,减少了浪费,但是IP地址的绝对上限并没有增加),仍然是不够用,这时候有三种方案提出:
- 动态分配IP地址:只给接入网络的设备分配IP地址,一次同一个MAC地址的设备,每次接入互联网中,得到的IP地址不一定是相同的
- IPv6:IPv6并不是IPv4的简单升级版,这是两个互不相干的协议,彼此并不兼容,IPv6用16字节128位来表示一个IP地址,但是目前IPv6并未普及
- NAT技术:内网IP切公网IP
私网IP和公网IP
如果一个组织内部组建局域网,IP地址只用于局域网内的通信,而不直接连到Internet上,理论上使用任意的IP地址都可以,但是RFC1918规定了用于组建局域网的私有IP地址。
- 10.* ,前8位是网络号,共 16 777 216 个地址
- 172.16.* ~ 172.31.* ,前12位是网络号,共 1 048 576 个地址
- 192.168.* ~ 192.168.* ,前16位是网络号,共 65 536 个地址
- 包含在这些范围内的都是私网IP,其它的则称为全局IP(公网IP)
特殊的IP地址
- 将IP地址中的主机地址全部设置为0,就成为了网络号,代表这个局域网
- 将IP地址中的主机地址全部设置为1,就成为了广播地址,用于给同一个链路中的互相连接的所有主机发送数据包
- 127.* 的IP地址用于本机环回(loop back)测试,通常是127.0.0.1
五、路由
路由:在复杂的网络结构中,找出一条通往终点的路线。
- 一个路由器可以配置两个IP地址,一个是WAN口IP,一个是LAN口IP(子网IP)
- 路由器LAN口连接的主机,从属于这个路由器的子网中
- 不同的路由器,子网IP其实都是一样的(通常都是192.168.1.1),子网中的主机IP不能重复,但是子网之间的主机IP可以重复了
- 每一个家用路由器,其实又作为运营商路由器的子网中的一个节点,这样的运营商路由器可能会有很多级,最外层的运营商路由器,WAN接口就是公网IP了
- 子网内的主机需要和外网进行通行时,路由器将IP首部中的IP地址进行替换(替换成WAN口IP),这样逐级替换,最终数据包中的IP地址称为一个公网IP,这样的技术就是NAT(Network Address Translation, 网络地址转换)
如果希望我们自己实现的服务器能够在公网上能访问到,就需要把程序部署在具有外网IP的服务器上,这样的服务器可以在阿里云/腾讯云上面访问到。
路由的过程,就是这样“一跳一跳”(Hop by Hop)“问路”的过程,所谓的“一跳”就是数据链路层中的一个区间,具体在以太网中指从源MAC地址到目的MAC地址之间的帧传输区间。
路由在问路的过程中,会先询问“目标网络”的地址,到达“目标网络”之后,再询问目标“目标主机”的地址。
IP数据包的传输过程也一样,当IP数据包,到达路由器时,路由器会先查看目的IP,路由器决定这个数据包是能直接发送给目标主机还是发送给下一个路由器,依次反复直到发送给目的IP地址。
那么如何判定当前这个数据包该发送到哪里呢?这个就依靠每个节点内部维护一个路由表。
- 路由表可以用route命令查看
- 如果目的IP命中了路由表,就直接转发即可
- 路由表中的最后一行,主要由下一跳地址和发送接口两部分组成,当目的地址与路由表中其它行都不匹配时,就按缺省路由条目规定的接口发送到下一跳地址
假设某主机的网络接口配置和路由表如下:
- 这台主机有两个网络接口,一个网络接口连到192.168.10.0/24,另一个网络接口连到192.168.56.0/24这个网络
- 路由表的Destination是目的网络地址,Genmask是子网掩码,Gateway是下一跳地址,Iface是发送地址,Flags中的U标志表示此条目有效,G标志表示此条目的下一跳地址是某个路由器的地址,没有G标志的条目表示目的网络地址是与本机直接向量的网络,不用经过路由器转发
转发示例1:要发送数据的目的地址是192.168.56.3
- 跟第一行的子网掩码做运算得到192.168.56.0,与第一行的目的网络地址不符
- 再跟第二行的子网掩码做与运算得到192.168.56.0,正是第二行的目的网路地址,因此从eth1接口发送过去
- 由于192.168.56/24正是与eth1接口直接相连的网络,因此可以直接发送到目的主机,不需要经过路由器转发
转发示例2:要发送的数据的目的地址是202.10.1.2
- 依次和路由表前几项进行对比,发现都不匹配
- 按缺省路由条目,从eth0接口发出去,发往192.168.10.1路由器
- 由192.168.10.1路由器根据它的路由表决定下一跳地址
六、分片和组装
数据在网络中是以MAC帧的格式进行传输,每个MAC帧的最大长度是1500字节,故长度大于1500字节的数据报需要进行分片发送,到达目的地址之后再进行组装。
- 如何判断一个报文是否被分片了?通过3位标志进行判断,如果某个报文存在3位标志的更多分片标志为1的分片,则这个报文被分片了。
- 同一个报文的分片如何识别?通过16位标识识别,同一个报文的不同分片,它们的16位标识是一样的。
- 哪一个分片是第一个?哪一个分片是最后一个?通过3位标志和13位片偏移判断,如果3位标志的更多分片标志为1且13位片偏移为0,则是第一个分片,如果3位标志的更多分片标志为0且13位片偏移不为0,则是最后一个分片。
- 如何判断分片有没有全部被接收?当前的起始位置 + 自身长度 = 下一个报文中填充的偏移量大小,通过这个进行判断接收到的分片有没有缺失。
- 如何对接收到的全部分片进行组装?按照片偏移量对分片进行升序排序即可。
分片好吗?分片并不好,分片越多数据丢失的几率就越大,丢失一个报文就需要重新发送全部报文,故分片并不是在通信时的主流情况。
相关文章:

【Linux后端服务器开发】IP协议
目录 一、IP协议概述 二、协议头格式 三、网段划分 四、IP地址的数量限制 五、路由 六、分片和组装 一、IP协议概述 主机:配有IP地址,但是不进行路由控制的设备 路由器:即配有IP地址,又能进行路由控制 节点:主…...

React组件进阶之children属性,props校验与默认值以及静态属性static
React组件进阶之children属性,props校验与默认值以及静态属性static 一、children属性二、props校验2.1 props说明2.2 prop-types的安装2.3 props校验规则2.4 props默认值 三、静态属性static 一、children属性 children 属性:表示该组件的子节点,只要组…...

ceph集群中RBD的性能测试、性能调优
文章目录 rados benchrbd bench-write测试工具Fio测试ceph rbd块设备的iops性能测试ceph rbd块设备的带宽测试ceph rbd块设备的延迟 性能调优 rados bench 参考:https://blog.csdn.net/Micha_Lu/article/details/126490260 rados bench为ceph自带的基准测试工具&am…...

texshop mac中文版-TeXShop for Mac(Latex编辑预览工具)
texshop for mac是一款可以在苹果电脑MAC OS平台上使用的非常不错的Mac应用软件,texshop for mac是一个非常有用的工具,广泛使用在数学,计算机科学,物理学,经济学等领域的合作,这些程序的标准tetex分布特产…...

简单认识redis高可用实现方法
文章目录 一、redis群集三种模式二、 Redis 主从复制1、简介2、作用:3、流程:4.配置主从复制 三、Redis 哨兵模式1、简介2、原理:3、作用:4、哨兵结构由两部分组成,哨兵节点和数据节点:5、故障转移机制:6、…...
搭建git服务器
1.创建linux账户,创建文件 adduser git passwd gitpsw su git pwd cd ~/ mkdir .ssh cd ~/.ssh touch authorized_keys 2.特别重要(单独起一行),给文件设权限 chmod 700 /home/git/.ssh chmod 600 /home/git/.ssh/authorized_keys 3.本地生产密钥并把…...
线程中断机制
如何中断一个线程? 首先一个线程不应该由其他线程来强制中断或者停止,而是应该由线程自己自行停止。所以我们看到线程的stop()、resume()、suspend()等方法已经被标记为过时了。 其次在java中没有办法立即停止一个线程,然而停止线程显得尤为重…...
CollectionUtils工具类的使用
来自:小小程序员。 本文仅作记录 org.apache.commons.collections包下的CollectionUtils工具类,下面说说它的用法: 一、集合判空 通过CollectionUtils工具类的isEmpty方法可以轻松判断集合是否为空,isNotEmpty方法判断集合不为…...

基于Nonconvex规划的配电网重构研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

yolo系列笔记(v4-v5)
YOLOv4 YOLOv4网络详解_哔哩哔哩_bilibili 网络结构,在Yolov3的Darknet的基础上增加了CSP结构。 CSP的优点: 加强CNN的学习能力 去除计算瓶颈。 减少显存的消耗。 结构为: 、 其实还是类似与残差网络的结构,保留下采样之前…...
小白如何高效刷题Leetcode?
文章目录 为什么会有这样的现象?研究与学习人生而有别 如何解决困境?1. 要补的:化抽象为具体,列举找规律2. 要补的:前人总结的套路3. 与人交流探讨4. 多写总结文章 总结 明明自觉学会了不少知识,可真正开始…...

使用IDEA打jar包的详细图文教程
1. 点击intellij idea左上角的“File”菜单 -> Project Structure 2. 点击"Artifacts" -> 绿色的"" -> “JAR” -> Empty 3. Name栏填入自定义的名字,Output ditectory 选择 jar 包目标目录,Available Elements 里右击…...

《MySQL 实战 45 讲》课程学习笔记(二)
日志系统:一条 SQL 更新语句是如何执行的? 与查询流程不一样的是,更新流程还涉及两个重要的日志模块:redo log(重做日志)和 binlog(归档日志)。 重要的日志模块:redo l…...

微软亚研院提出模型基础架构RetNet或将成为Transformer有力继承者
作为全新的神经网络架构,RetNet 同时实现了良好的扩展结果、并行训练、低成本部署和高效推理。这些特性将使 RetNet 有可能成为继 Transformer 之后大语言模型基础网络架构的有力继承者。实验数据也显示,在语言建模任务上: RetNet 可以达到与…...

探索单例模式:设计模式中的瑰宝
文章目录 常用的设计模式有以下几种:一.创建型模式(Creational Patterns):二.结构型模式(Structural Patterns):三.行为型模式(Behavioral Patterns):四.并发…...
Bobo String Construction 2023牛客暑期多校训练营4-A
登录—专业IT笔试面试备考平台_牛客网 题目大意:给出一字符串t,求一个长为n的字符串,使tst中包含且仅包含两个t 1<n<1000;测试样例组数<1000 思路:一开始很容易想到如果t里有1,s就全0,否则s就全…...
【React学习】React父子组件通讯
1. 父到子传值 在React框架中,父组件可以通过 props 将数据传递给子组件。子组件通过读取 props 来访问父组件传递过来的数据。 当父组件的 props 发生变化时,React 会自动重新渲染子组件以确保子组件中使用的数据保持同步。 父组件 import React, {…...

NASM汇编
1. 前置知识 1. 汇编语言两种风格 intel:我们学的NASM就属于Intel风格AT&T:GCC后端工具默认使用这种风格,当然我们也可以加选项改成intel风格 2. 代码 1. 段分布 .text: 存放的是二进制机器码,只读.data: 存放有初始化的…...

第三章 HL7 架构和可用工具 - 使用 HL7 架构结构页面
文章目录 第三章 HL7 架构和可用工具 - 使用 HL7 架构结构页面使用 HL7 架构结构页面查看文档类型列表查看消息结构查看段结构 第三章 HL7 架构和可用工具 - 使用 HL7 架构结构页面 使用 HL7 架构结构页面 通过 HL7 架构页面,可以导入和查看 HL7 版本 2 架构规范。…...
spring注解驱动开发(一)
1、需要导入的spring框架的依赖 <dependency><groupId>org.springframework</groupId><artifactId>spring-context</artifactId><version>4.3.12.RELEASE</version></dependency>2、Configuration 设置类为配置类 3、Annota…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
《Offer来了:Java面试核心知识点精讲》大纲
文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...

高效的后台管理系统——可进行二次开发
随着互联网技术的迅猛发展,企业的数字化管理变得愈加重要。后台管理系统作为数据存储与业务管理的核心,成为了现代企业不可或缺的一部分。今天我们要介绍的是一款名为 若依后台管理框架 的系统,它不仅支持跨平台应用,还能提供丰富…...