【iOS】Frame与Bounds的区别详解
iOS的坐标系
iOS特有的坐标是,是在iOS坐标系的左上角为坐标原点,往右为X正方向,向下为Y正方向。

bounds和frame都是属于CGRect类型的结构体,系统的定义如下,包含一个CGPoint(起点)和一个CGSize(尺寸)子结构体。
struct CGRect {CGPoint origin;CGSize size;
};
origin决定了View每个view的起点,size决定view的尺寸。
1. frame
frame是每个view必备的属性,表示view在父view坐标系统中的位置和大小,参照点是父视图的坐标系统。
示例代码:
- (void)test_frame {UIView *viewA = [[UIView alloc] initWithFrame:CGRectMake(50, 50, 300, 300)];[viewA setBackgroundColor:[UIColor blueColor]];[self.view addSubview:viewA];NSLog(@"viewA - %@",NSStringFromCGRect(viewA.frame));UIView *viewB = [[UIView alloc] initWithFrame:CGRectMake(50, 50, 200, 200)];[viewB setBackgroundColor:[UIColor yellowColor]];[viewA addSubview:viewB];NSLog(@"viewB - %@",NSStringFromCGRect(viewB.frame));UIView *viewC = [[UIView alloc] initWithFrame:CGRectMake(100, 100, 100, 100)];[viewC setBackgroundColor:[UIColor redColor]];[self.view addSubview:viewC];NSLog(@"viewC - %@",NSStringFromCGRect(viewC.frame));
}


以上可以看出,viewB和viewC的起点重合,但是从打印结果来看,viewB的起点为(50,50),而viewC起点为(100,100)。原因就是frame中的位置是以父视图的坐标系为标准来确定当前视图的位置,viewB的父视图为viewA,viewC的父视图为self.view,而由于viewA的起点为(50,50),所以viewB与viewC起点才会重合。
2. bounds
bounds也是每个view都有的属性,这个属性我们一般不进行设置,表示view在本地坐标系统中的位置和大小。参照点是本地坐标系统。如果我们对上例打印bounds,将会得到以下结果:
- (void)test_bounds {UIView *viewA = [[UIView alloc] initWithFrame:CGRectMake(50, 50, 300, 300)];[viewA setBackgroundColor:[UIColor blueColor]];[self.view addSubview:viewA];NSLog(@"viewA - %@",NSStringFromCGRect(viewA.bounds));UIView *viewB = [[UIView alloc] initWithFrame:CGRectMake(50, 50, 200, 200)];[viewB setBackgroundColor:[UIColor yellowColor]];[viewA addSubview:viewB];NSLog(@"viewB - %@",NSStringFromCGRect(viewB.bounds));UIView *viewC = [[UIView alloc] initWithFrame:CGRectMake(100, 100, 100, 100)];[viewC setBackgroundColor:[UIColor redColor]];[self.view addSubview:viewC];NSLog(@"viewC - %@",NSStringFromCGRect(viewC.bounds));
}

因为我们并没有设置bounds值,那么,bounds到底有什么作用呢。这里强调,每个视图都有自己的坐标系,且这个坐标系默认以自身的左上角为坐标原点,所有子视图以这个坐标系的原点为基准点。bounds的位置代表的是子视图看待当前视图左上角的位置,bounds的大小代表当前视图的大小。原则如下:
- 更改
bounds中的位置对于当前视图没有影响,相当于更改了当前视图的坐标系,对于子视图来说当前视图的左上角已经不再是(0,0), 而是改变后的坐标,坐标系改了,那么所有子视图的位置也会跟着改变。 - 更改
bounds的大小,bounds的大小代表当前视图的长和宽,修改长宽后,中心点继续保持不变, 长宽进行改变,通过bounds修改长宽看起来就像是以中心点为基准点对长宽两边同时进行缩放。
3. frame和bounds的区别
3.1 origin的区别
如图:

此时,如果我们把ViewA的bounds改为(0,100),结果如下

我们始终要清楚,bounds的位置代表的是子视图看待当前视图左上角的位置。 bounds遵守的原则:
- 更改bounds中的位置对于当前视图(ViewA)没有影响,相当于更改了ViewA的坐标系,但是子视图(ViewB)不同,对于ViewB来说ViewA的左上角已经不再是(0,0), 而是(0,100),所以对于ViewB来说,ViewA坐标系的原点其实是在红色箭头所指处的上方100处,而此时ViewB的frame.origin为(200,100),所以ViewB的上边与ViewA上边重合。
如果我们更改ViewA的bounds为(200,0),同理(可以自己思考试试),结果如下:

3.2 size的区别
frame的size直接决定了view的大小,而bounds的size修改后,view的中心点不变,长宽以中心点进行缩放。
// frame bounds在size设置的区别
- (void)frame_bounds_size {UIView *viewA = [[UIView alloc] initWithFrame:CGRectMake(0, 0, 320, 240)];[viewA setBackgroundColor:[UIColor grayColor]];[self.view addSubview:viewA];UIView *viewB = [[UIView alloc] initWithFrame:CGRectMake(100, 50, 160, 120)];[viewB setBackgroundColor:[UIColor blueColor]];[viewA addSubview:viewB];}
设置一个A和BView,分别用frame和bound改变子试图的size。
原图

使用bounds修改
[viewB setBounds:CGRectMake(0, 0, 320, 240)];

使用frame修改:
[viewB setFrame:CGRectMake(100, 50, 320, 240)];

发现基于bounds的修改viewB左上点距离viewA显然不为(100,50),而是进行了基于viewB视图中心点的缩放操作。
总结
- frame不管对于位置还是大小,改变的都是自己本身。
- frame的位置是以父视图的坐标系为参照,从而确定当前视图在父视图中的位置。
- frame的大小改变时,当前视图的左上角位置不会发生改变,只是大小发生改变。
- bounds改变位置时,改变的是子视图的位置,自身没有影响;其实就是改变了本身的坐标系原点,默认本身坐标系的原点是左上角。
- bounds的大小改变时,当前视图的中心点不会发生改变,当前视图的大小发生改变,看起来效果就想缩放一样。‘
参考:frame和bounds详解
相关文章:
【iOS】Frame与Bounds的区别详解
iOS的坐标系 iOS特有的坐标是,是在iOS坐标系的左上角为坐标原点,往右为X正方向,向下为Y正方向。 bounds和frame都是属于CGRect类型的结构体,系统的定义如下,包含一个CGPoint(起点)和一个CGSiz…...
SpringBoot百货超市商城系统 附带详细运行指导视频
文章目录 一、项目演示二、项目介绍三、运行截图四、主要代码 一、项目演示 项目演示地址: 视频地址 二、项目介绍 项目描述:这是一个基于SpringBoot框架开发的百货超市系统。首先,这是一个很适合SpringBoot初学者学习的项目,代…...
【实践篇】推荐算法PaaS化探索与实践 | 京东云技术团队
作者:京东零售 崔宁 1. 背景说明 目前,推荐算法部支持了主站、企业业务、全渠道等20业务线的900推荐场景,通过梳理大促运营、各垂直业务线推荐场景的共性需求,对现有推荐算法能力进行沉淀和积累,并通过算法PaaS化打造…...
持续贡献开源力量,棱镜七彩加入openKylin
近日,棱镜七彩签署 openKylin 社区 CLA(Contributor License Agreement 贡献者许可协议),正式加入openKylin 开源社区。 棱镜七彩成立于2016年,是一家专注于开源安全、软件供应链安全的创新型科技企业。自成立以来&…...
Kafka的消费者如何管理偏移量?
在Kafka中,消费者可以通过管理和跟踪偏移量(offset)来确保消费者在消费消息时的准确性和可靠性。偏移量表示消费者在特定分区中已经消费的消息的位置。以下是几种常见的偏移量管理方式: 手动提交偏移量:消费者可以通过…...
IntelliJ IDEA流行的构建工具——Gradle
IntelliJ IDEA,是java编程语言开发的集成环境。IntelliJ在业界被公认为最好的java开发工具,尤其在智能代码助手、代码自动提示、重构、JavaEE支持、各类版本工具(git、svn等)、JUnit、CVS整合、代码分析、 创新的GUI设计等方面的功能可以说是超常的。 如…...
nacos源码打包及相关配置
nacos 本地下载后,需要 install 下: mvn clean install -Dmaven.test.skiptrue -Dcheckstyle.skiptrue -Dpmd.skiptrue -Drat.skiptruenacos源码修改后,重新打包生成压缩包命令:在 distribution 目录中运行: mvn -Pr…...
【机器学习】Multiple Variable Linear Regression
Multiple Variable Linear Regression 1、问题描述1.1 包含样例的X矩阵1.2 参数向量 w, b 2、多变量的模型预测2.1 逐元素进行预测2.2 向量点积进行预测 3、多变量线性回归模型计算损失4、多变量线性回归模型梯度下降4.1 计算梯度4.2梯度下降 首先,导入所需的库 im…...
自己创建的类,其他类中使用错误
说明:自己创建的类,在其他类中创建,报下面的错误(Cannot resolve sysmbol ‘Redishandler’); 解决:看下是不是漏掉了包名 加上包名,问题解决;...
Packet Tracer – 使用 TFTP 服务器升级思科 IOS 映像。
Packet Tracer – 使用 TFTP 服务器升级思科 IOS 映像。 地址分配表 设备 接口 IP 地址 子网掩码 默认网关 R1 F0/0 192.168.2.1 255.255.255.0 不适用 R2 G0/0 192.168.2.2 255.255.255.0 不适用 S1 VLAN 1 192.168.2.3 255.255.255.0 192.168.2.1 TFTP …...
并查集基础
一、概念及其介绍 并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题。 并查集的思想是用一个数组表示了整片森林(parent),树的根节点唯一标识了一个集合,我们只要找到了某个元素的的树根…...
C# 循环等知识点
《1》程序:事先写好的指令(代码) using 准备工具 namespace 模块名称 { class 子模块{ static void main()//具体事项 { 代码 } } } 《2》变量:内存里的一块空间,用来存储数据常用的有小数,整数,…...
1.1.2 SpringCloud 版本问题
目录 版本标识 版本类型 查看对应版本 版本兼容的权威——官网: 具体的版本匹配支持信息可以查看 总结 在将Spring Cloud集成到Spring Boot项目中时,确保选择正确的Spring Cloud版本和兼容性是非常重要的。由于Spring Cloud存在多个版本,因此…...
Android AIDL 使用
工程目录图 请点击下面工程名称,跳转到代码的仓库页面,将工程 下载下来 Demo Code 里有详细的注释 代码:LearnAIDL代码:AIDLClient. 参考文献 安卓开发学习之AIDL的使用android进阶-AIDL的基本使用Android AIDL 使用使用 AIDL …...
MongoDB——命令详解
db.fruit.remove({name:apple})//删除a为apple的记录db.fruit.remove({})//删除所有的记录db.fruit.remove()//报错 MongoDB使用及命令大全(一)_mongodb 删除命令_言不及行yyds的博客-CSDN博客...
机器学习深度学习——多层感知机的简洁实现
👨🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习&&深度学习——多层感知机的从零开始实现 📚订阅专栏:机器学习&&深度学习 希望文章对你…...
笙默考试管理系统-MyExamTest(21)
笙默考试管理系统-MyExamTest(21) 目录 一、 笙默考试管理系统-MyExamTest 二、 笙默考试管理系统-MyExamTest 三、 笙默考试管理系统-MyExamTest 四、 笙默考试管理系统-MyExamTest 五、 笙默考试管理系统-MyExamTest 六、 笙默考试管理系统…...
Redis高可用之主从复制、哨兵、cluster集群
一、Redis主从复制1.1 Redis主从复制的概念1.2 Redis主从复制作用1.3 主从复制流程1.4 搭建 Redis 主从复制 二、Redis哨兵模式2.1 概述2.2 哨兵模式原理2.3 哨兵模式的作用2.4 哨兵结构2.5 故障转移机制2.6 主节点的选举2.7 搭建Redis 哨兵模式 三、Redis 群集模式3.1 概述3.2…...
【需求响应DR】一种新的需求响应机制DR-VCG研究(Python代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...
【Django学习】(十六)session_token认证过程与区别_响应定制
一、认识session与token 这里就直接引用别人的文章,不做过多说明 网络应用中session和token本质是一样的吗,有什么区别? - 知乎 二、token响应定制 在全局配置表中配置 DEFAULT_AUTHENTICATION_CLASSES: [# 指定jwt Token认证rest_framew…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...
JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案
JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停 1. 安全点(Safepoint)阻塞 现象:JVM暂停但无GC日志,日志显示No GCs detected。原因:JVM等待所有线程进入安全点(如…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
CppCon 2015 学习:Simple, Extensible Pattern Matching in C++14
什么是 Pattern Matching(模式匹配) ❝ 模式匹配就是一种“描述式”的写法,不需要你手动判断、提取数据,而是直接描述你希望的数据结构是什么样子,系统自动判断并提取。❞ 你给的定义拆解: ✴ Instead of …...
