25.9 matlab里面的10中优化方法介绍—— 惩罚函数法求约束最优化问题(matlab程序)
1.简述
一、算法原理
1、问题引入
之前我们了解过的算法大部分都是无约束优化问题,其算法有:黄金分割法,牛顿法,拟牛顿法,共轭梯度法,单纯性法等。但在实际工程问题中,大多数优化问题都属于有约束优化问题。惩罚函数法就可以将约束优化问题转化为无约束优化问题,从而使用无约束优化算法。
2、约束优化问题的分类
约束优化问题大致分为三类:等式约束、不等式约束、等式+不等式约束。
其数学模型为:
等式约束
s.t hv(x)=0,v=1,2,...,p<n
等式约束
s.t
等式+不等式约束问题
s.t hv(x)=0,v=1,2,...,p<n
3、惩罚函数法定义
惩罚函数法(SUMT法)又称序列无约束极小化技术,将等式约束与不等式约束的条件,经过适当定义的复合函数加到原目标函数上构造了惩罚函数,从而取消了约束,转而求解一系列无约束优化问题。
按照惩罚函数再优化过程中的迭代点是否在约束条件的可行域内,又分为内点法、外点法和混合法
内点法:迭代点再约束条件的可行域之内,只用于不等式约束。
外点法:迭代点再约束条件的可行域之外,既用于不等式约束又可用于等式约束。
4、外点惩罚函数法
等式约束:
s.t h1(x)=x1−2=0,h2(x)=x2+3=0
算法步骤
a、构造惩罚函数:F=f+M * { [ h1(x) ]^2 + [ h2(x) ]^2 } ,式中M为初始惩罚因子;
b、然后用无约束优化极值算法求解(牛顿法);
c、 如果相邻两次惩罚函数无约束最优点之间的距离足够小【norm(x1-x0)<eps】,则收敛;
否则放大惩罚因子M=C*M,式中C为 罚因子放大系数;
d、转步骤a继续迭代;
2.代码
主程序:
clear
f ='f1209';
x0=[3 0];
TolX = 1e-4;
TolFun = 1e-9;
MaxIter=100;
alpha0 = 1;
%%%%选用不是基于梯度的无约束最优化方法求解,的正确结果
[xo_Nelder,fo_Nelder] = Opt_Nelder(f,x0,TolX,TolFun,MaxIter) %Nelder 方法
[fc_Nelder,fo_Nelder,co_Nelder] = f1209(xo_Nelder) %Nelder方法结果
[xo_s,fo_s] = fminsearch(f,x0) %MATLAB 内置函数fminsearch()
[fc_s,fo_s,co_s] = f1209(xo_s) %相应的结果
%%%基于梯度的方法最速下降法等,得到错误结果
grad=inline('[2*(x(1)+1)*((x(1)-1.2)^2+0.4*(x(2)-0.5)^2)+((x(1)+1)^2+4*(x(2)-1.5)^2)*2*(x(1)-1.2),8*(x(2)-1.5)*((x(1)-1.2)^2+0.4*(x(2)-0.5)^2)+((x(1)+1)^2+4*(x(2)-1.5)^2)*0.8*(x(2)-0.5)]','x');
xo_steep = Opt_Steepest(f,grad,x0,TolX,TolFun,alpha0) %最速下降法
[fc_steep,fo_steep,co_steep] = f1209(xo_steep) %相应结果
[xo_u,fo_u] = fminunc(f,x0); % MATLAB 内置函数fminunc()
[fc_u,fo_u,co_u] = f1209(xo_u) %相应结果
子程序:
function [xo,fo] =Opt_Nelder(f,x0,TolX,TolFun,MaxIter)
%Nelder-Mead法用于多维变量的最优化问题,维数>=2.
N = length(x0);
if N == 1 %一维情况,用二次逼近计算
[xo,fo] = Opt_Quadratic(f,x0,TolX,TolFun,MaxIter);
return
end
S = eye(N);
for i = 1:N %自变量维数大于2时,重复计算每个子平面的情况
i1 = i + 1;
if i1 > N
i1 = 1;
end
abc = [x0; x0 + S(i,:); x0 + S(i1,:)]; %每一个定向子平面
fabc = [feval(f,abc(1,:)); feval(f,abc(2,:)); feval(f,abc(3,:))];
[x0,fo] = Nelder0(f,abc,fabc,TolX,TolFun,MaxIter);
if N < 3 %二维情况不需重复
break;
end
end
xo = x0;
3.运行结果




相关文章:
25.9 matlab里面的10中优化方法介绍—— 惩罚函数法求约束最优化问题(matlab程序)
1.简述 一、算法原理 1、问题引入 之前我们了解过的算法大部分都是无约束优化问题,其算法有:黄金分割法,牛顿法,拟牛顿法,共轭梯度法,单纯性法等。但在实际工程问题中,大多数优化问题都属于有约…...
django channels实战(websocket底层原理和案例)
1、websocket相关 1.1、轮询 1.2、长轮询 1.3、websocket 1.3.1、websocket原理 1.3.2、django框架 asgi.py在django项目同名app目录下 1.3.3、聊天室 django代码总结 小结 1.3.4、群聊(一) 前端代码 后端代码 1.3.5、群聊(二)…...
学习使用axios,绑定动态数据
目录 axios特性 案例一:通过axios获取笑话 案例二:调用城市天气api接口数据实现天气查询案例 axios特性 支持 Promise API 拦截请求和响应(可以在请求前及响应前做某些操作,例如,在请求前想要在这个请求头中加一些…...
c语言内存函数的深度解析
本章对 memcpy,memmove,memcmp 三个函数进行详解和模拟实现; 本章重点:3个常见内存函数的使用方法及注意事项并学会模拟实现; 如果您觉得文章不错,期待你的一键三连哦,你的鼓励是我创作的动力…...
低代码平台介绍(国内常见的)
文章目录 前言1、阿里云宜搭2、腾讯云微搭3、百度爱速搭4、华为云Astro轻应用 Astro Zero(AppCube)5、字节飞书多维表格6、云程低代码平台7、ClickPaaS8、网易轻舟9、用友YonBuilder10、金蝶苍穹云平台11、泛微平台12、蓝凌低代码平台13、简道云14、轻流…...
matlab RRR机械臂 简略代码
RRR机器人!启动! gazebo在arm mac上似乎难以运行,退而选择Matlab,完成老师第一个作业,现学现卖,权当记录作业过程,有不足之处,多多指教。 作业!启动! RRR机…...
集成测试,单元测试隔离 maven-surefire-plugin
详见 集成测试,单元测试隔离 maven-surefire-plugin maven的goal生命周期 Maven生存周期 - 含 integration-test Maven本身支持的命令(Goals)是有顺序的,越后面执行的命令,会将其前面的命令和其本身按顺序执行一遍,…...
渗透测试基础知识(1)
渗透基础知识一 一、Web架构1、了解Web2、Web技术架构3、Web客户端技术4、Web服务端组成5、动态网站工作过程6、后端存储 二、HTTP协议1、HTTP协议解析2、HTTP协议3、http1.1与http2.0的区别4、HTTP协议 三、HTTP请求1、发起HTTP请求2、HTTP响应与请求-HTTP请求3、HTTP响应与请…...
Android NDK开发
工程目录图 NDK中文官网 请点击下面工程名称,跳转到代码的仓库页面,将工程 下载下来 Demo Code 里有详细的注释 代码:TestNDK 参考文献 Android NDK 从入门到精通(汇总篇)Android JNI(一)——NDK与JNI基础Android之…...
使用python爬取淘宝商品信息
要使用Python爬取淘宝商品信息,您可以按照以下步骤: 安装必要的库 您需要安装Python的requests库和BeautifulSoup库。 要使用Python爬取淘宝商品信息,您可以按照以下步骤:安装必要的库 您需要安装Python的requests库和Beautifu…...
QEMU源码全解析18 —— QOM介绍(7)
接前一篇文章:QEMU源码全解析17 —— QOM介绍(6) 本文内容参考: 《趣谈Linux操作系统》 —— 刘超,极客时间 《QEMU/KVM》源码解析与应用 —— 李强,机械工业出版社 特此致谢! 上一回完成了对…...
【华为OD机试】 选修课
题目描述 现有两门选修课,每门选修课都有一部分学生选修,每个学生都有选修课的成绩,需要你找出同时选修了两门选修课的学生,先按照班级进行划分,班级编号小的先输出,每个班级按照两门选修课成绩和的降序排序…...
225. 用队列实现栈
请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push、top、pop 和 empty)。 实现 MyStack 类: void push(int x) 将元素 x 压入栈顶。 int pop() 移除并返回栈顶元素。 int to…...
IDEA将本地项目上传到码云
一、创建本地仓库并关联 用IDEA打开项目,在菜单栏点击vcs->create git repository创建本地仓库, 选择当前项目所在的文件夹当作仓库目录。 二、将项目提交本地仓库 项目名右键就会出现“GIT”这个选项->Add->Commit Directory, 先将项目add…...
Ubuntu更改虚拟机网段(改成桥接模式无法连接网络)
因为工作需要,一开始在安装vmware和虚拟机时,是用的Nat网络。 现在需要修改虚拟机网段,把ip设置成和Windows端同一网段,我们就要去使用桥接模式。 环境: Windows10、Ubuntu20.04虚拟机编辑里打开虚拟网络编辑器&#…...
谷粒商城第七天-商品服务之分类管理下的删除、新增以及修改商品分类
目录 一、总述 1.1 前端思路 1.2 后端思路 二、前端部分 2.1 删除功能 2.2 新增功能 2.3 修改功能 三、后端部分 3.1 删除接口 3.2 新增接口 3.3 修改接口 四、总结 一、总述 1.1 前端思路 删除和新增以及修改的前端无非就是点击按钮,就向后端发送请求…...
Redis学习路线(1)—— Redis的安装
一、NoSQL SQL VS NoSQL 1、名称 SQL 主要是指关系数据库。NoSQL 主要是指非关系数据库。 2、存储结构 SQL 是结构化的数据库,以表格的形式存储数据。NoSQL 是非结构化的数据库,以Key-Value(Redis),JSON格式文档&…...
《MySQL 实战 45 讲》课程学习笔记(五)
数据库锁:全局锁、表锁和行锁 根据加锁的范围,MySQL 里面的锁大致可以分成全局锁、表级锁和行锁三类。 全局锁 全局锁就是对整个数据库实例加锁。 MySQL 提供了一个加全局读锁的方法,命令是 Flush tables with read lock (FTWRL)。当你需要…...
使用GADL对高程数据进行填洼
对于DEM数据中存在的洼地(sink)问题,可以使用GADL(Geospatial Data Abstraction Library)中的功能进行填洼操作。GADL是一个开源的GIS库,提供了许多对地理空间数据进行处理和分析的功能。 下面是使用GADL对…...
Spring Boot集成Swagger3.0,Knife4j导出文档
文章目录 Spring Boot集成Swagger3.0,Knife4j导出文档效果展示如何使用简要说明添加依赖添加配置类测试接口token配置位置 官网 说明情况 demo Spring Boot集成Swagger3.0,Knife4j导出文档 效果展示 如何使用 简要说明 Knife4j的前身是swagger-bootstrap-ui,前身swagger-boo…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
