25.9 matlab里面的10中优化方法介绍—— 惩罚函数法求约束最优化问题(matlab程序)
1.简述
一、算法原理
1、问题引入
之前我们了解过的算法大部分都是无约束优化问题,其算法有:黄金分割法,牛顿法,拟牛顿法,共轭梯度法,单纯性法等。但在实际工程问题中,大多数优化问题都属于有约束优化问题。惩罚函数法就可以将约束优化问题转化为无约束优化问题,从而使用无约束优化算法。
2、约束优化问题的分类
约束优化问题大致分为三类:等式约束、不等式约束、等式+不等式约束。
其数学模型为:
等式约束
s.t hv(x)=0,v=1,2,...,p<n
等式约束
s.t
等式+不等式约束问题
s.t hv(x)=0,v=1,2,...,p<n
3、惩罚函数法定义
惩罚函数法(SUMT法)又称序列无约束极小化技术,将等式约束与不等式约束的条件,经过适当定义的复合函数加到原目标函数上构造了惩罚函数,从而取消了约束,转而求解一系列无约束优化问题。
按照惩罚函数再优化过程中的迭代点是否在约束条件的可行域内,又分为内点法、外点法和混合法
内点法:迭代点再约束条件的可行域之内,只用于不等式约束。
外点法:迭代点再约束条件的可行域之外,既用于不等式约束又可用于等式约束。
4、外点惩罚函数法
等式约束:
s.t h1(x)=x1−2=0,h2(x)=x2+3=0
算法步骤
a、构造惩罚函数:F=f+M * { [ h1(x) ]^2 + [ h2(x) ]^2 } ,式中M为初始惩罚因子;
b、然后用无约束优化极值算法求解(牛顿法);
c、 如果相邻两次惩罚函数无约束最优点之间的距离足够小【norm(x1-x0)<eps】,则收敛;
否则放大惩罚因子M=C*M,式中C为 罚因子放大系数;
d、转步骤a继续迭代;
2.代码
主程序:
clear
f ='f1209';
x0=[3 0];
TolX = 1e-4;
TolFun = 1e-9;
MaxIter=100;
alpha0 = 1;
%%%%选用不是基于梯度的无约束最优化方法求解,的正确结果
[xo_Nelder,fo_Nelder] = Opt_Nelder(f,x0,TolX,TolFun,MaxIter) %Nelder 方法
[fc_Nelder,fo_Nelder,co_Nelder] = f1209(xo_Nelder) %Nelder方法结果
[xo_s,fo_s] = fminsearch(f,x0) %MATLAB 内置函数fminsearch()
[fc_s,fo_s,co_s] = f1209(xo_s) %相应的结果
%%%基于梯度的方法最速下降法等,得到错误结果
grad=inline('[2*(x(1)+1)*((x(1)-1.2)^2+0.4*(x(2)-0.5)^2)+((x(1)+1)^2+4*(x(2)-1.5)^2)*2*(x(1)-1.2),8*(x(2)-1.5)*((x(1)-1.2)^2+0.4*(x(2)-0.5)^2)+((x(1)+1)^2+4*(x(2)-1.5)^2)*0.8*(x(2)-0.5)]','x');
xo_steep = Opt_Steepest(f,grad,x0,TolX,TolFun,alpha0) %最速下降法
[fc_steep,fo_steep,co_steep] = f1209(xo_steep) %相应结果
[xo_u,fo_u] = fminunc(f,x0); % MATLAB 内置函数fminunc()
[fc_u,fo_u,co_u] = f1209(xo_u) %相应结果
子程序:
function [xo,fo] =Opt_Nelder(f,x0,TolX,TolFun,MaxIter)
%Nelder-Mead法用于多维变量的最优化问题,维数>=2.
N = length(x0);
if N == 1 %一维情况,用二次逼近计算
[xo,fo] = Opt_Quadratic(f,x0,TolX,TolFun,MaxIter);
return
end
S = eye(N);
for i = 1:N %自变量维数大于2时,重复计算每个子平面的情况
i1 = i + 1;
if i1 > N
i1 = 1;
end
abc = [x0; x0 + S(i,:); x0 + S(i1,:)]; %每一个定向子平面
fabc = [feval(f,abc(1,:)); feval(f,abc(2,:)); feval(f,abc(3,:))];
[x0,fo] = Nelder0(f,abc,fabc,TolX,TolFun,MaxIter);
if N < 3 %二维情况不需重复
break;
end
end
xo = x0;
3.运行结果




相关文章:
25.9 matlab里面的10中优化方法介绍—— 惩罚函数法求约束最优化问题(matlab程序)
1.简述 一、算法原理 1、问题引入 之前我们了解过的算法大部分都是无约束优化问题,其算法有:黄金分割法,牛顿法,拟牛顿法,共轭梯度法,单纯性法等。但在实际工程问题中,大多数优化问题都属于有约…...
django channels实战(websocket底层原理和案例)
1、websocket相关 1.1、轮询 1.2、长轮询 1.3、websocket 1.3.1、websocket原理 1.3.2、django框架 asgi.py在django项目同名app目录下 1.3.3、聊天室 django代码总结 小结 1.3.4、群聊(一) 前端代码 后端代码 1.3.5、群聊(二)…...
学习使用axios,绑定动态数据
目录 axios特性 案例一:通过axios获取笑话 案例二:调用城市天气api接口数据实现天气查询案例 axios特性 支持 Promise API 拦截请求和响应(可以在请求前及响应前做某些操作,例如,在请求前想要在这个请求头中加一些…...
c语言内存函数的深度解析
本章对 memcpy,memmove,memcmp 三个函数进行详解和模拟实现; 本章重点:3个常见内存函数的使用方法及注意事项并学会模拟实现; 如果您觉得文章不错,期待你的一键三连哦,你的鼓励是我创作的动力…...
低代码平台介绍(国内常见的)
文章目录 前言1、阿里云宜搭2、腾讯云微搭3、百度爱速搭4、华为云Astro轻应用 Astro Zero(AppCube)5、字节飞书多维表格6、云程低代码平台7、ClickPaaS8、网易轻舟9、用友YonBuilder10、金蝶苍穹云平台11、泛微平台12、蓝凌低代码平台13、简道云14、轻流…...
matlab RRR机械臂 简略代码
RRR机器人!启动! gazebo在arm mac上似乎难以运行,退而选择Matlab,完成老师第一个作业,现学现卖,权当记录作业过程,有不足之处,多多指教。 作业!启动! RRR机…...
集成测试,单元测试隔离 maven-surefire-plugin
详见 集成测试,单元测试隔离 maven-surefire-plugin maven的goal生命周期 Maven生存周期 - 含 integration-test Maven本身支持的命令(Goals)是有顺序的,越后面执行的命令,会将其前面的命令和其本身按顺序执行一遍,…...
渗透测试基础知识(1)
渗透基础知识一 一、Web架构1、了解Web2、Web技术架构3、Web客户端技术4、Web服务端组成5、动态网站工作过程6、后端存储 二、HTTP协议1、HTTP协议解析2、HTTP协议3、http1.1与http2.0的区别4、HTTP协议 三、HTTP请求1、发起HTTP请求2、HTTP响应与请求-HTTP请求3、HTTP响应与请…...
Android NDK开发
工程目录图 NDK中文官网 请点击下面工程名称,跳转到代码的仓库页面,将工程 下载下来 Demo Code 里有详细的注释 代码:TestNDK 参考文献 Android NDK 从入门到精通(汇总篇)Android JNI(一)——NDK与JNI基础Android之…...
使用python爬取淘宝商品信息
要使用Python爬取淘宝商品信息,您可以按照以下步骤: 安装必要的库 您需要安装Python的requests库和BeautifulSoup库。 要使用Python爬取淘宝商品信息,您可以按照以下步骤:安装必要的库 您需要安装Python的requests库和Beautifu…...
QEMU源码全解析18 —— QOM介绍(7)
接前一篇文章:QEMU源码全解析17 —— QOM介绍(6) 本文内容参考: 《趣谈Linux操作系统》 —— 刘超,极客时间 《QEMU/KVM》源码解析与应用 —— 李强,机械工业出版社 特此致谢! 上一回完成了对…...
【华为OD机试】 选修课
题目描述 现有两门选修课,每门选修课都有一部分学生选修,每个学生都有选修课的成绩,需要你找出同时选修了两门选修课的学生,先按照班级进行划分,班级编号小的先输出,每个班级按照两门选修课成绩和的降序排序…...
225. 用队列实现栈
请你仅使用两个队列实现一个后入先出(LIFO)的栈,并支持普通栈的全部四种操作(push、top、pop 和 empty)。 实现 MyStack 类: void push(int x) 将元素 x 压入栈顶。 int pop() 移除并返回栈顶元素。 int to…...
IDEA将本地项目上传到码云
一、创建本地仓库并关联 用IDEA打开项目,在菜单栏点击vcs->create git repository创建本地仓库, 选择当前项目所在的文件夹当作仓库目录。 二、将项目提交本地仓库 项目名右键就会出现“GIT”这个选项->Add->Commit Directory, 先将项目add…...
Ubuntu更改虚拟机网段(改成桥接模式无法连接网络)
因为工作需要,一开始在安装vmware和虚拟机时,是用的Nat网络。 现在需要修改虚拟机网段,把ip设置成和Windows端同一网段,我们就要去使用桥接模式。 环境: Windows10、Ubuntu20.04虚拟机编辑里打开虚拟网络编辑器&#…...
谷粒商城第七天-商品服务之分类管理下的删除、新增以及修改商品分类
目录 一、总述 1.1 前端思路 1.2 后端思路 二、前端部分 2.1 删除功能 2.2 新增功能 2.3 修改功能 三、后端部分 3.1 删除接口 3.2 新增接口 3.3 修改接口 四、总结 一、总述 1.1 前端思路 删除和新增以及修改的前端无非就是点击按钮,就向后端发送请求…...
Redis学习路线(1)—— Redis的安装
一、NoSQL SQL VS NoSQL 1、名称 SQL 主要是指关系数据库。NoSQL 主要是指非关系数据库。 2、存储结构 SQL 是结构化的数据库,以表格的形式存储数据。NoSQL 是非结构化的数据库,以Key-Value(Redis),JSON格式文档&…...
《MySQL 实战 45 讲》课程学习笔记(五)
数据库锁:全局锁、表锁和行锁 根据加锁的范围,MySQL 里面的锁大致可以分成全局锁、表级锁和行锁三类。 全局锁 全局锁就是对整个数据库实例加锁。 MySQL 提供了一个加全局读锁的方法,命令是 Flush tables with read lock (FTWRL)。当你需要…...
使用GADL对高程数据进行填洼
对于DEM数据中存在的洼地(sink)问题,可以使用GADL(Geospatial Data Abstraction Library)中的功能进行填洼操作。GADL是一个开源的GIS库,提供了许多对地理空间数据进行处理和分析的功能。 下面是使用GADL对…...
Spring Boot集成Swagger3.0,Knife4j导出文档
文章目录 Spring Boot集成Swagger3.0,Knife4j导出文档效果展示如何使用简要说明添加依赖添加配置类测试接口token配置位置 官网 说明情况 demo Spring Boot集成Swagger3.0,Knife4j导出文档 效果展示 如何使用 简要说明 Knife4j的前身是swagger-bootstrap-ui,前身swagger-boo…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
C++.OpenGL (20/64)混合(Blending)
混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...
HTML前端开发:JavaScript 获取元素方法详解
作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...
消息队列系统设计与实践全解析
文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...
C++--string的模拟实现
一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现,其目的是加强对string的底层了解,以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量,…...
Qwen系列之Qwen3解读:最强开源模型的细节拆解
文章目录 1.1分钟快览2.模型架构2.1.Dense模型2.2.MoE模型 3.预训练阶段3.1.数据3.2.训练3.3.评估 4.后训练阶段S1: 长链思维冷启动S2: 推理强化学习S3: 思考模式融合S4: 通用强化学习 5.全家桶中的小模型训练评估评估数据集评估细节评估效果弱智评估和民间Arena 分析展望 如果…...
