当前位置: 首页 > news >正文

AIGC(Artificial Intelligence Generated Content)和 Web3对比,未来发展

一、AIGC(Artificial Intelligence Generated Content)行业

  1. 历史背景
    AIGC(Artificial Intelligence Generated Content)是指利用人工智能技术生成的内容。随着人工智能技术的不断发展,AIGC 行业逐渐兴起。早期的 AIGC 主要应用于自动化写作、新闻摘要生成等领域,随着技术的不断进步,AIGC 开始涉及更多的领域,如视频生成、图像生成、音频生成等。
  2. 市场规模
    AIGC 行业目前还处于快速发展阶段,市场规模不断扩大。根据市场研究公司的数据,全球 AIGC 市场规模将从 2021 年的 18 亿美元增长到 2028 年的 108 亿美元,复合年增长率为 26.4%。
  3. 发展现状
    AIGC 技术正在逐渐成熟,应用领域也在不断拓展。目前,AIGC 技术主要应用于以下几个领域:
    (1)自动化写作:利用自然语言处理技术,为新闻、报告等文本生成自动化写作工具。
    (2)新闻摘要生成:利用机器学习算法,对新闻内容进行提炼和总结,生成简短的新闻摘要。
    (3)视频生成:利用深度学习技术,生成具有一定情节和故事性的视频内容。
    (4)图像生成:利用生成对抗网络(GAN)等技术,生成逼真的图像内容。
    (5)音频生成:利用声音合成技术,生成各种音效和声音。
  4. 区别与优缺点
    AIGC 行业的主要区别在于其生产内容的方式。与传统的内容生产方式相比,AIGC 技术具有生产效率高、成本低、创作空间大等优点。但同时也存在一些缺点,如生成内容可能存在版权问题、缺乏情感和创造力等问题。
  5. 职位及技能要求
    AIGC 行业涉及多个职位,以下是一些常见的职位及其技能要求:
    (1)人工智能研究员:熟悉机器学习、深度学习等相关技术,能够研究和开发新的 AIGC 算法。
    (2)自然语言处理工程师:熟悉自然语言处理技术,能够设计和实现自动化写作工具。
    (3)图像/视频生成工程师:熟悉计算机视觉和生成对抗网络等相关技术,能够设计和实现图像/视频生成算法。
    (4)产品经理:熟悉 AIGC 行业应用场景,能够设计和推广 AIGC 产品。
  6. 标杆公司
    一些在 AIGC 领域具有影响力的公司包括:
    (1)OpenAI:一家致力于推动人工智能发展的公司,曾开发出 GPT 系列自动写作工具。
    (2)DeepMind:谷歌旗下的一家人工智能研究公司,曾开发出 AlphaGo 等人工智能产品。
    (3)IBM Watson:IBM 旗下的人工智能业务部门,为客户提供各种 AIGC 解决方案。

二、Web3 行业

  1. 历史背景
    Web3 是指 Web3.0,是互联网的下一代,主要特点是去中心化、开放和透明。Web3 行业源于区块链技术的发展,随着加密货币和智能合约的普及,Web3 逐渐成为人们关注的焦点。
  2. 市场规模
    Web3 行业目前还处于快速发展阶段,市场规模不断扩大。根据市场研究公司的数据,全球 Web3 市场规模将从 2021 年的 22 亿美元增长到 2028 年的 233 亿美元,复合年增长率为 47.6%。
  3. 发展现状
    Web3 技术正在逐渐成熟,应用领域也在不断拓展。目前,Web3 技术主要应用于以下几个领域:
    (1)加密货币:利用区块链技术发行的数字货币,如比特币、以太坊等。
    (2)智能合约:利用区块链技术实现的自动执行合约,可以应用于金融、物流等多个领域。
    (3)去中心化应用:利用区块链技术实现的去中心化应用,如去中心化交易所、去中心化存储等。
    (4)数字身份认证:利用区块链技术实现的数字身份认证,可以确保个人隐私和信息安全。
  4. 区别与优缺点
    Web3 行业的主要区别在于其去中心化的特点。与传统的互联网模式相比,Web3 具有开放、透明、安全等优点。但同时也存在一些缺点,如性能瓶颈、扩展性不足、用户门槛较高等问题。
  5. 职位及技能要求
    Web3 行业涉及多个职位,以下是一些常见的职位及其技能要求:
    (1)区块链开发工程师:熟悉区块链技术,能够设计和实现区块链底层架构和智能合约。
    (2)去中心化应用开发工程师:熟悉智能合约开发和部署,能够设计和实现去中心化应用。
    (3)加密货币研究员:熟悉加密货币市场和技术,能够研究和分析加密货币的发展趋势。
    (4)数字身份认证专家:熟悉数字身份认证技术,能够设计和实施安全可靠的数字身份认证系统。
    (5)产品经理:熟悉 Web3 行业应用场景,能够设计和推广 Web3 产品。
  6. 标杆公司
    一些在 Web3 领域具有影响力的项目或者公司包括:
    (1)比特币(Bitcoin):比特币是 Web3 行业的代表性产物,作为一种去中心化的数字货币,它推动了区块链技术和加密货币的发展。
    (2)以太坊(Ethereum):以太坊是一个去中心化的智能合约平台,为 Web3 行业提供了强大的基础设施。
    (3)卡尔达诺(Cardano):卡尔达诺是一个基于区块链技术的去中心化平台,致力于提供一种高效、可靠、安全的数字货币和智能合约解决方案。
    (4)波卡(Polkadot):波卡是一个开放的、异构的跨链多链架构,旨在通过提供一个安全的、可扩展的、互操作的生态系统,将不同的区块链(包括公链、私链、联盟链等)连接起来,实现数据、资产、合约等的跨链传输和交互。
    未来发展机遇和挑战:
    Web3 行业的未来发展机遇主要在于其去中心化的特点,可以为用户提供更加安全、透明、开放的服务,同时也可以为开发者提供一个创新的、充满可能性的生态系统。随着加密货币和智能合约的普及,Web3 行业有望在金融、物流、游戏等多个领域得到广泛应用。
    然而,Web3 行业也面临着一些挑战。例如,性能瓶颈、扩展性不足、用户门槛较高等问题都需要得到解决。此外,Web3 行业需要面对来自传统互联网行业的竞争压力,以及来自监管部门对加密货币和区块链技术的关注和监管。不过,随着技术的发展和应用场景的不断拓展,Web3 行业有望继续保持快速发展态势。

相关文章:

AIGC(Artificial Intelligence Generated Content)和 Web3对比,未来发展

一、AIGC(Artificial Intelligence Generated Content)行业 历史背景 AIGC(Artificial Intelligence Generated Content)是指利用人工智能技术生成的内容。随着人工智能技术的不断发展,AIGC 行业逐渐兴起。早期的 AIG…...

机器学习之Boosting和AdaBoost

1 Boosting和AdaBoost介绍 1.1 集成学习 集成学习 (Ensemble Learning) 算法的基本思想就是将多个分类器组合,从而实现一个预测效果更好的集成分类器。 集成学习通过建立几个模型来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学…...

汇编语言预定义寄存器和协处理器

ARM汇编器对ARM的寄存器和协处理器进行了预定义(包括APCS对r0~r15寄存器的定义),所有的寄存器和协处理器名都是大小写敏感的。 (1)预定义寄存器名 下面列出了被ARM汇编器预定义的寄存器名。 r0&#xff…...

【前缀和】974. 和可被 K 整除的子数组

Halo,这里是Ppeua。平时主要更新C,数据结构算法,Linux与ROS…感兴趣就关注我bua! 974. 和可被 K 整除的子数组 题目:示例:题解: 题目: 示例: 题解: 本题与560.和为K的子数组高度相似 同样的,本题利用了前缀和的定理.当(pre[i]-…...

linux页框回收之shrink_node函数源码剖析

概述 《Linux内存回收入口_nginux的博客-CSDN博客》前文我们概略的描述了几种内存回收入口,我们知道几种回收入口最终都会调用进入shrink_node函数,本文将以Linux 5.9源码来描述shrink_node函数的源码实现。 函数调用流程图 scan_control数据结构 str…...

网络运维基础问题及解答

前言 本篇文章是对于网络运维基础技能的一些常见问题的解答,希望能够为进行期末复习或者对网络运维感兴趣的同学或专业人员提供一定的帮助。 问题及解答 1. 列举 3 种常用字符编码,简述怎样在 str 和 bytes 之间进行编码和解码。 答:常用的…...

【RabbitMQ】之保证数据不丢失方案

目录 一、数据丢失场景二、数据可靠性方案 1、生产者丢失消息解决方案2、MQ 队列丢失消息解决方案3、消费者丢失消息解决方案 一、数据丢失场景 MQ 消息数据完整的链路为:从 Producer 发送消息到 RabbitMQ 服务器中,再由 Broker 服务的 Exchange 根据…...

插入排序算法

插入排序 算法说明与代码实现&#xff1a; 以下是使用Go语言实现的插入排序算法示例代码&#xff1a; package mainimport "fmt"func insertionSort(arr []int) {n : len(arr)for i : 1; i < n; i {key : arr[i]j : i - 1for j > 0 && arr[j] > …...

Linux标准库API

目录 1.字符串函数 2.数据转换函数 3.格式化输入输出函数 4.权限控制函数 5.IO函数 6.进程控制函数 7.文件和目录函数 1.字符串函数 2.数据转换函数 3.格式化输入输出函数 #include<stdarg.h>void test(const char * format , ...){va_list ap;va_start(ap,format…...

腾讯云—自动挂载云盘

腾讯云&#xff0c;稍微麻烦了点。 腾讯云服务器&#xff0c;镜像为opencloudos 8。 ### 1、挂载云盘bash #首先通过以下命令&#xff0c;能够看到新的数据盘&#xff0c;如果不能需要通过腾讯云控制台卸载后&#xff0c;重新挂载&#xff0c;并重启服务器。 fdisk -l#为 /dev…...

为Win12做准备?微软Win11 23H2将集成AI助手:GPT4免费用

微软日前确认今年4季度推出Win11 23H2&#xff0c;这是Win11第二个年度更新。 Win11 23H2具体有哪些功能升级&#xff0c;现在还不好说&#xff0c;但它会集成微软的Copilot&#xff0c;它很容易让人想到多年前的“曲别针”助手&#xff0c;但这次是AI技术加持的&#xff0c;Co…...

Opencv Win10+Qt+Cmake 开发环境搭建

文章目录 一.Opencv安装二.Qt搭建opencv开发环境 一.Opencv安装 官网下载Opencv安装包 双击下载的软件进行解压 3. 系统环境变量添加 二.Qt搭建opencv开发环境 创建一个新的Qt项目(Non-Qt Project) 打开创建好的项目中的CMakeLists.txt&#xff0c;添加如下代码 # openc…...

Matlab实现光伏仿真(附上30个完整仿真源码)

光伏发电电池模型是描述光伏电池在不同条件下产生电能的数学模型。该模型可以用于预测光伏电池的输出功率&#xff0c;并为优化光伏电池系统设计和控制提供基础。本文将介绍如何使用Matlab实现光伏发电电池模型。 文章目录 1、光伏发电电池模型2、使用Matlab实现光伏发电电池模…...

JSON.stringify()与JSON.parse()

JSON.parse() 方法用来解析 JSON 字符串 onst json {"result":true, "count":42}; const obj JSON.parse(json); console.log(typeof(json)) //string console.log(typeof(obj)) //objJSON.stringify() 方法将一个 JavaScript 对象或值转换为 JSON 字…...

neo4j教程-安装部署

neo4j教程-安装部署 Neo4j的关键概念和特点 •Neo4j是一个开源的NoSQL图形存储数据库&#xff0c;可为应用程序提供支持ACID的后端。Neo4j的开发始于2003年&#xff0c;自2007年转变为开源图形数据库模型。程序员使用的是路由器和关系的灵活网络结构&#xff0c;而不是静态表…...

网络面试合集

传输层的数据结构是什么&#xff1f; 就是在问他的协议格式&#xff1a;UDP&TCP 2.1.1三次握手 通信前&#xff0c;要先建立连接&#xff0c;确保双方都是在线&#xff0c;具有数据收发的能力。 2.1.2四次挥手 通信结束后&#xff0c;会有一个断开连接的过程&#xff0…...

java+springboot+mysql智慧办公OA管理系统

项目介绍&#xff1a; 使用javaspringbootmysql开发的智慧办公OA管理系统&#xff0c;系统包含超级管理员&#xff0c;系统管理员、员工角色&#xff0c;功能如下&#xff1a; 超级管理员&#xff1a;管理员管理&#xff1b;部门管理&#xff1b;职位管理&#xff1b;员工管理…...

【教程】Tkinter实现Python软件自动更新与提醒

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhang.cn] 文件下载&#xff1a;https://download.csdn.net/download/sxf1061700625/88134425 示例演示&#xff1a; 参考代码&#xff1a; import os import _thread import shutil import subprocess import sys import …...

音频深度学习变得简单:自动语音识别 (ASR),它是如何工作的

一、说明 在过去的几年里&#xff0c;随着Google Home&#xff0c;Amazon Echo&#xff0c;Siri&#xff0c;Cortana等的普及&#xff0c;语音助手已经无处不在。这些是自动语音识别 &#xff08;ASR&#xff09; 最著名的示例。此类应用程序从某种语言的语音音频剪辑开始&…...

反射简述

什么是反射反射在java中起到什么样的作用获取class对象的三种方式反射的优缺点图 什么是反射 JAVA反射机制是在运行状态中&#xff0c;对于任意一个类&#xff0c;都能够知道这个类的所有属性和方法&#xff1b;对于任意一个对象&#xff0c;都能够调用它的任意一个方法和属性&…...

Kotlin泛型的协变与逆变

以下内容摘自郭霖《第一行代码》第三版 泛型的协变 一个泛型类或者泛型接口中的方法&#xff0c;它的参数列表是接收数据的地方&#xff0c;因此可以称它为in位置&#xff0c;而它的返回值是输出数据的地方&#xff0c;因此可以称它为out位置。 先定义三个类&#xff1a; op…...

【后端面经】微服务构架 (1-6) | 隔离:如何确保心悦会员体验无忧?唱响隔离的鸣奏曲!

文章目录 一、前置知识1、什么是隔离?2、为什么要隔离?3、怎么进行隔离?A) 机房隔离B) 实例隔离C) 分组隔离D) 连接池隔离 与 线程池隔离E) 信号量隔离F) 第三方依赖隔离二、面试环节1、面试准备2、基本思路3、亮点方案A) 慢任务隔离B) 制作库与线上库分离三、章节总结 …...

复习之kickstart无人职守安装脚本

一、kickstart简介 kickstart是红帽发行版中的一种安装方式&#xff0c;它通过以配置文件的方式来记录linux系统安装的各项参数和想要安装的软件。只要配置正确&#xff0c;整个安装过程中无需人工交互参与&#xff0c;达到无人值守安装的目的。 二、kickstar文件的生成 进入/…...

CSS动画——实现波浪摇摆效果...

一、效果展示 以下主要实现四个动画&#xff1a; 元素上下摇摆动画波浪上下摇摆动画气泡上升及消失动画连续气泡右飘动画 二、实现思路 这里主要讲一下波浪上下摇摆动画和连续气泡右飘动画的实现思路 这里拿一张波浪图来举例解释实现波浪动画的思路&#xff1a; 波浪的摇…...

【MyBatis学习】Spring Boot(SSM)单元测试,不用打包就可以测试我们的项目了,判断程序是否满足需求变得如此简单 ? ? ?

前言: 大家好,我是良辰丫,在上一篇文章中我们学习了MyBatis简单的查询操作,今天来介绍一下Spring Boot(SSM)的一种单元测试,有人可能会感到疑惑,框架里面还有这玩意?什么东东呀,框架里面是没有这的,但是我们简单的学习一下单元测试,可以帮助我们自己测试代码,学习单元测试可以…...

JavaScript 类

本文内容学习于&#xff1a;后盾人 (houdunren.com) 1.可以使用类声明和赋值表达式定义类&#xff0c;推荐使用类声明来定义类 //类声明 class User {} console.log(new User()); //赋值表达式定义类 let Article class {}; console.log(new Article()); //类方法间不需要逗号…...

SpringBoot的static静态资源访问、参数配置、代码自定义访问规则

目录 1. 静态资源1.1 默认静态资源1.2 Controller高优先级1.3 修改静态资源的URL根路径1.4 修改静态资源的目录1.5 访问webjars依赖包的静态资源1.6 静态资源的关闭1.7 静态资源在浏览器的缓存1.8 静态资源实战1.9 通过代码自定义静态资源访问规则 1. 静态资源 查看源码如下&a…...

IO进、线程——线程(线程的创建、线程的退出、线程的回收、线程的分离和多线程并发编程)

线程 并发执行的轻量级进程 进程是资源分配的最小单位&#xff0c;线程是任务调度的最小单位 线程是进程的一部分&#xff0c;是任务调度的最小单位。一个进程可以包含多个线程&#xff0c;这些线程可以并发执行&#xff0c;共享进程的资源&#xff0c;但每个线程都有自己的…...

neo4j教程-Cypher操作

Cypher基础操作 Cypher是图形存储数据库Neo4j的查询语言&#xff0c;Cypher是通过模式匹配Neo4j数据库中的节点和关系&#xff0c;从而对数据库Neo4j中的节点和关系进行一系列的相关操作。 下面&#xff0c;通过一张表来介绍一下常用的Neo4j操作命令及相关说明&#xff0c;具…...

秋招算法备战第31天 | 贪心算法理论基础、455.分发饼干、376. 摆动序列、53. 最大子序和

贪心算法理论基础 贪心算法并没有固定的套路&#xff0c;唯一的难点就是如何通过局部最优&#xff0c;推出整体最优。如何验证可不可以用贪心算法呢&#xff1f;最好用的策略就是举反例&#xff0c;如果想不到反例&#xff0c;那么就试一试贪心吧。刷题或者面试的时候&#xf…...