当前位置: 首页 > news >正文

Python+OpenCV实现自动扫雷,挑战扫雷世界记录!

        

目录

准备

- 扫雷软件

 实现思路

- 01 窗体截取

- 02 雷块分割

- 03 雷块识别

- 04 扫雷算法实现


福利:文末有Python全套资料哦

        我们一起来玩扫雷吧。用Python+OpenCV实现了自动扫雷,突破世界记录,我们先来看一下效果吧。

图片

中级 - 0.74秒 3BV/S=60.81

相信许多人很早就知道有扫雷这么一款经典的游(显卡测试)戏(软件),更是有不少人曾听说过中国雷圣,也是中国扫雷第一、世界综合排名第二的郭蔚嘉的顶顶大名。扫雷作为一款在Windows9x时代就已经诞生的经典游戏,从过去到现在依然都有着它独特的魅力:快节奏高精准的鼠标操作要求、快速的反应能力、刷新纪录的快感,这些都是扫雷给雷友们带来的、只属于扫雷的独一无二的兴奋点。

准备

准备动手制作一套扫雷自动化软件之前,你需要准备如下一些工具/软件/环境

- 开发环境

  1. Python3 环境 - 推荐3.6或者以上 [更加推荐Anaconda3,以下很多依赖库无需安装]

  2. numpy依赖库 [如有Anaconda则无需安装]

  3. PIL依赖库 [如有Anaconda则无需安装]

  4. opencv-python

  5. win32gui、win32api依赖库

  6. 支持Python的IDE [可选,如果你能忍受用文本编辑器写程序也可以]

- 扫雷软件

· Minesweeper Arbiter 下载地址(必须使用MS-Arbiter来进行扫雷!)

好啦,那么我们的准备工作已经全部完成了!让我们开始吧~ 

 实现思路

在去做一件事情之前最重要的是什么?是将要做的这件事情在心中搭建一个步骤框架。只有这样,才能保证在去做这件事的过程中,尽可能的做到深思熟虑,使得最终有个好的结果。我们写程序也要尽可能做到在正式开始开发之前,在心中有个大致的思路。

对于本项目而言,大致的开发过程是这样的:

  1. 完成窗体内容截取部分

  2. 完成雷块分割部分

  3. 完成雷块类型识别部分

  4. 完成扫雷算法

好啦,既然我们有了个思路,那就撸起袖子大力干!

- 01 窗体截取

其实对于本项目而言,窗体截取是一个逻辑上简单,实现起来却相当麻烦的部分,而且还是必不可少的部分。我们通过Spy++得到了以下两点信息:

 
class_name = "TMain"
title_name = "Minesweeper Arbiter "
ms_arbiter.exe的主窗体类别为"TMain"ms_arbiter.exe的主窗体名称为"Minesweeper Arbiter "

注意到了么?主窗体的名称后面有个空格。正是这个空格让笔者困扰了一会儿,只有加上这个空格,win32gui才能够正常的获取到窗体的句柄。

本项目采用了win32gui来获取窗体的位置信息,具体代码如下:

hwnd = win32gui.FindWindow(class_name, title_name)
if hwnd:
left, top, right, bottom = win32gui.GetWindowRect(hwnd)

通过以上代码,我们得到了窗体相对于整块屏幕的位置。之后我们需要通过PIL来进行扫雷界面的棋盘截取。

我们需要先导入PIL库

from PIL import ImageGrab

然后进行具体的操作。

left += 15
top += 101
right -= 15
bottom -= 43rect = (left, top, right, bottom)
img = ImageGrab.grab().crop(rect)

聪明的你肯定一眼就发现了那些奇奇怪怪的Magic Numbers,没错,这的确是Magic Numbers,是我们通过一点点细微调节得到的整个棋盘相对于窗体的位置。

注意:这些数据仅在Windows10下测试通过,如果在别的Windows系统下,不保证相对位置的正确性,因为老版本的系统可能有不同宽度的窗体边框。

图片

橙色的区域是我们所需要的

好啦,棋盘的图像我们有了,下一步就是对各个雷块进行图像分割了~

- 02 雷块分割

图片

在进行雷块分割之前,我们事先需要了解雷块的尺寸以及它的边框大小。经过笔者的测量,在ms_arbiter下,每一个雷块的尺寸为16px*16px。

知道了雷块的尺寸,我们就可以进行每一个雷块的裁剪了。首先我们需要知道在横和竖两个方向上雷块的数量。

​​​​​​​

block_width, block_height = 16, 16blocks_x = int((right - left) / block_width)blocks_y = int((bottom - top) / block_height)

之后,我们建立一个二维数组用于存储每一个雷块的图像,并且进行图像分割,保存在之前建立的数组中。​​​​​​​

def crop_block(hole_img, x, y):x1, y1 = x * block_width, y * block_heightx2, y2 = x1 + block_width, y1 + block_height
return hole_img.crop((x1, y1, x2, y2))blocks_img = [[0 for i in range(blocks_y)] for i in range(blocks_x)]for y in range(blocks_y):
for x in range(blocks_x):blocks_img[x][y] = crop_block(img, x, y)

将整个图像获取、分割的部分封装成一个库,随时调用就OK啦~在笔者的实现中,我们将这一部分封装成了imageProcess.py,其中函数get_frame()用于完成上述的图像获取、分割过程。

- 03 雷块识别

这一部分可能是整个项目里除了扫雷算法本身之外最重要的部分了。笔者在进行雷块检测的时候采用了比较简单的特征,高效并且可以满足要求。

def analyze_block(self, block, location):block = imageProcess.pil_to_cv(block)block_color = block[8, 8]x, y = location[0], location[1]# -1:Not opened# -2:Opened but blank# -3:Un initialized# Opened
if self.equal(block_color, self.rgb_to_bgr((192, 192, 192))):
if not self.equal(block[8, 1], self.rgb_to_bgr((255, 255, 255))):
self.blocks_num[x][y] = -2
self.is_started = True
else:
self.blocks_num[x][y] = -1elif self.equal(block_color, self.rgb_to_bgr((0, 0, 255))):
self.blocks_num[x][y] = 1elif self.equal(block_color, self.rgb_to_bgr((0, 128, 0))):
self.blocks_num[x][y] = 2elif self.equal(block_color, self.rgb_to_bgr((255, 0, 0))):
self.blocks_num[x][y] = 3elif self.equal(block_color, self.rgb_to_bgr((0, 0, 128))):
self.blocks_num[x][y] = 4elif self.equal(block_color, self.rgb_to_bgr((128, 0, 0))):
self.blocks_num[x][y] = 5elif self.equal(block_color, self.rgb_to_bgr((0, 128, 128))):
self.blocks_num[x][y] = 6elif self.equal(block_color, self.rgb_to_bgr((0, 0, 0))):
if self.equal(block[6, 6], self.rgb_to_bgr((255, 255, 255))):# Is mine
self.blocks_num[x][y] = 9elif self.equal(block[5, 8], self.rgb_to_bgr((255, 0, 0))):# Is flag
self.blocks_num[x][y] = 0
else:
self.blocks_num[x][y] = 7elif self.equal(block_color, self.rgb_to_bgr((128, 128, 128))):
self.blocks_num[x][y] = 8
else:
self.blocks_num[x][y] = -3
self.is_mine_form = Falseif self.blocks_num[x][y] == -3 or not self.blocks_num[x][y] == -1:
self.is_new_start = False

可以看到,我们采用了读取每个雷块的中心点像素的方式来判断雷块的类别,并且针对插旗、未点开、已点开但是空白等情况进行了进一步判断。具体色值是笔者直接取色得到的,并且屏幕截图的色彩也没有经过压缩,所以通过中心像素结合其他特征点来判断类别已经足够了,并且做到了高效率。

在本项目中,我们实现的时候采用了如下标注方式:

  • 1-8:表示数字1到8

  • 9:表示是地雷

  • 0:表示插旗

  • -1:表示未打开

  • -2:表示打开但是空白

  • -3:表示不是扫雷游戏中的任何方块类型

通过这种简单快速又有效的方式,我们成功实现了高效率的图像识别。

- 04 扫雷算法实现

这可能是本篇文章最激动人心的部分了。在这里我们需要先说明一下具体的扫雷算法思路:

  1. 遍历每一个已经有数字的雷块,判断在它周围的九宫格内未被打开的雷块数量是否和本身数字相同,如果相同则表明周围九宫格内全部都是地雷,进行标记。

  2. 再次遍历每一个有数字的雷块,取九宫格范围内所有未被打开的雷块,去除已经被上一次遍历标记为地雷的雷块,记录并且点开。

  3. 如果以上方式无法继续进行,那么说明遇到了死局,选择在当前所有未打开的雷块中随机点击。(当然这个方法不是最优的,有更加优秀的解决方案,但是实现相对麻烦)

基本的扫雷流程就是这样,那么让我们来亲手实现它吧~

首先我们需要一个能够找出一个雷块的九宫格范围的所有方块位置的方法。因为扫雷游戏的特殊性,在棋盘的四边是没有九宫格的边缘部分的,所以我们需要筛选来排除掉可能超过边界的访问。​​​​​​​

def analyze_block(self, block, location):block = imageProcess.pil_to_cv(block)block_color = block[8, 8]x, y = location[0], location[1]# -1:Not opened# -2:Opened but blank# -3:Un initialized# Opened
if self.equal(block_color, self.rgb_to_bgr((192, 192, 192))):
if not self.equal(block[8, 1], self.rgb_to_bgr((255, 255, 255))):
self.blocks_num[x][y] = -2
self.is_started = True
else:
self.blocks_num[x][y] = -1elif self.equal(block_color, self.rgb_to_bgr((0, 0, 255))):
self.blocks_num[x][y] = 1elif self.equal(block_color, self.rgb_to_bgr((0, 128, 0))):
self.blocks_num[x][y] = 2elif self.equal(block_color, self.rgb_to_bgr((255, 0, 0))):
self.blocks_num[x][y] = 3elif self.equal(block_color, self.rgb_to_bgr((0, 0, 128))):
self.blocks_num[x][y] = 4elif self.equal(block_color, self.rgb_to_bgr((128, 0, 0))):
self.blocks_num[x][y] = 5elif self.equal(block_color, self.rgb_to_bgr((0, 128, 128))):
self.blocks_num[x][y] = 6elif self.equal(block_color, self.rgb_to_bgr((0, 0, 0))):
if self.equal(block[6, 6], self.rgb_to_bgr((255, 255, 255))):# Is mine
self.blocks_num[x][y] = 9elif self.equal(block[5, 8], self.rgb_to_bgr((255, 0, 0))):# Is flag
self.blocks_num[x][y] = 0
else:
self.blocks_num[x][y] = 7elif self.equal(block_color, self.rgb_to_bgr((128, 128, 128))):
self.blocks_num[x][y] = 8
else:
self.blocks_num[x][y] = -3
self.is_mine_form = Falseif self.blocks_num[x][y] == -3 or not self.blocks_num[x][y] == -1:
self.is_new_start = False

我们在这一部分通过检测当前雷块是否在棋盘的各个边缘来进行核的删除(在核中,1为保留,0为舍弃),之后通过generate_kernel函数来进行最终坐标的生成。​​​​​​​

def count_unopen_blocks(blocks):count = 0
for single_block in blocks:
if self.blocks_num[single_block[1]][single_block[0]] == -1:count += 1
return countdef mark_as_mine(blocks):
for single_block in blocks:
if self.blocks_num[single_block[1]][single_block[0]] == -1:
self.blocks_is_mine[single_block[1]][single_block[0]] = 1unopen_blocks = count_unopen_blocks(to_visit)
if unopen_blocks == self.blocks_num[x][y]:mark_as_mine(to_visit)

在完成核的生成之后,我们有了一个需要去检测的雷块“地址簿”:to_visit。之后,我们通过count_unopen_blocks函数来统计周围九宫格范围的未打开数量,并且和当前雷块的数字进行比对,如果相等则将所有九宫格内雷块通过mark_as_mine函数来标注为地雷。

def mark_to_click_block(blocks):
for single_block in blocks:# Not Mine
if not self.blocks_is_mine[single_block[1]][single_block[0]] == 1:
# Click-able
if self.blocks_num[single_block[1]][single_block[0]] == -1:# Source Syntax: [y][x] - Converted
if not (single_block[1], single_block[0]) in self.next_steps:
self.next_steps.append((single_block[1], single_block[0]))def count_mines(blocks):count = 0
for single_block in blocks:
if self.blocks_is_mine[single_block[1]][single_block[0]] == 1:count += 1
return countmines_count = count_mines(to_visit)if mines_count == block:mark_to_click_block(to_visit)

扫雷流程中的第二步我们也采用了和第一步相近的方法来实现。先用和第一步完全一样的方法来生成需要访问的雷块的核,之后生成具体的雷块位置,通过count_mines函数来获取九宫格范围内所有雷块的数量,并且判断当前九宫格内所有雷块是否已经被检测出来。

如果是,则通过mark_to_click_block函数来排除九宫格内已经被标记为地雷的雷块,并且将剩余的安全雷块加入next_steps数组内。

# Analyze the number of blocks
self.iterate_blocks_image(BoomMine.analyze_block)# Mark all mines
self.iterate_blocks_number(BoomMine.detect_mine)# Calculate where to click
self.iterate_blocks_number(BoomMine.detect_to_click_block)if self.is_in_form(mouseOperation.get_mouse_point()):
for to_click in self.next_steps:on_screen_location = self.rel_loc_to_real(to_click)mouseOperation.mouse_move(on_screen_location[0], on_screen_location[1])mouseOperation.mouse_click()

在最终的实现内,笔者将几个过程都封装成为了函数,并且可以通过iterate_blocks_number方法来对所有雷块都使用传入的函数来进行处理,这有点类似Python中Filter的作用。

之后笔者做的工作就是判断当前鼠标位置是否在棋盘之内,如果是,就会自动开始识别并且点击。具体的点击部分,笔者采用了作者为"wp"的一份代码(从互联网搜集而得),里面实现了基于win32api的窗体消息发送工作,进而完成了鼠标移动和点击的操作。具体实现封装在mouseOperation.py中,有兴趣可以在文末的Github Repo中查看。

图片

  • 项目完整代码/GitHub地址 | https://github.com/ArtrixTech/BoomMine

  • 充电君会在第一时间给你带来最新、最全面的解读,别忘了三联一波哦。  
                                                       

                                               

     

    关注公众号:资源充电吧
    回复:Chat GPT
    充电君发你:免费畅享使用中文版哦
    点击小卡片关注下,回复:IT

    想要的资料全都有 
     

相关文章:

Python+OpenCV实现自动扫雷,挑战扫雷世界记录!

目录 准备 - 扫雷软件 实现思路 - 01 窗体截取 - 02 雷块分割 - 03 雷块识别 - 04 扫雷算法实现 福利:文末有Python全套资料哦 我们一起来玩扫雷吧。用PythonOpenCV实现了自动扫雷,突破世界记录,我们先来看一下效果吧。 中级 - 0.74秒 …...

XtarBackup 8.0.33-28 prepare 速度提升 20 倍!

在这篇博文中,我们将描述 Percona XtraBackup 8.0.33-28 的改进,这显著减少了备份准备所需的时间,以便进行恢复操作。 Percona XtraBackup 中的这一改进显着缩短了新节点加入 Percona XtraDB 集群(PXC) 所需的时间。 …...

Blazor前后端框架Known-V1.2.8

V1.2.8 Known是基于C#和Blazor开发的前后端分离快速开发框架,开箱即用,跨平台,一处代码,多处运行。 Gitee: https://gitee.com/known/KnownGithub:https://github.com/known/Known 概述 基于C#和Blazor…...

python模拟加密爬取诸葛

用python模拟代码加密逻辑 获取arg1def get_arg1(arg):_0x4b082b [0xf, 0x23, 0x1d, 0x18, 0x21, 0x10, 0x1, 0x26, 0xa, 0x9, 0x13, 0x1f, 0x28, 0x1b, 0x16, 0x17, 0x19, 0xd,0x6, 0xb, 0x27, 0x12, 0x14, 0x8, 0xe, 0x15, 0x20, 0x1a, 0x2, 0x1e, 0x7, 0x4, 0x11, 0x5, 0x3…...

安全学习DAY13_WEB应用源码获取

信息打点-WEB应用-源码获取 文章目录 信息打点-WEB应用-源码获取小节概述-思维导图资产架构-源码获取(后端)后端-开源后端-闭源-源码泄露源码泄露原因源码泄露方式集合网站备份压缩包git,svn源码泄露DS_Store文件泄露composer.json 泄露资源搜…...

Selenium+Java环境搭建(测试系列6)

目录 前言: 1.浏览器 1.1下载Chrome浏览器 1.2查看Chrome浏览器版本 1.3下载Chrome浏览器的驱动 2.配置系统环境变量path 3.验证是否成功 4.出现的问题 结束语: 前言: 这节中小编给大家讲解一下有关于Selenium Java环境的搭建&…...

Shell编程学习-If条件语句

示例1:使用传参的方式实现两个整数的比较: #!/bin/bash # read -p "Please input second number: " num1 num2if [ $num1 -lt $num2 ]thenecho "$num1 is less than $num2."exit fiif [ $num1 -eq $num2 ]thenecho "$num1 is …...

Android getDrawable()和getColor()

Android getDrawable() 1.过时代码 虽然过时,但是不妨碍使用 context.getResources().getDrawable(R.drawable.xxx) 2.建议代码 context.getDrawable(R.drawable.xxx) 有API限制 3.最新代码 ContextCompat.getDrawable(getContext(), R.drawable.xxx); 有A…...

Android Calendar

1.字符串日期比较大小 public static boolean compareDate(String pre, String last) {SimpleDateFormat sdf new SimpleDateFormat("yyyy-MM-dd");try {Date lastDate sdf.parse(last);Calendar lastCal Calendar.getInstance();lastCal.setTime(lastDate);Date …...

C# PaddleDetection 目标检测 ( yolov3_darknet)

效果 项目 VS2022.net4.8OpenCvSharp4Sdcb.PaddleDetection 代码 using OpenCvSharp; using OpenCvSharp.Extensions; using Sdcb.PaddleDetection; using Sdcb.PaddleInference; using System; using System.Drawing; using System.Windows.Forms; using YamlDotNet;namespa…...

matlab多线程,parfor循环进度,matlab互斥锁

一. 内容简介 matlab多线程,parfor循环进度,matlab互斥锁 二. 软件环境 2.1 matlab 2022b 2.2代码链接 https://gitee.com/JJW_1601897441/csdn 三.主要流程 3.1 matlab多线程 有好几种,最简单的,最好理解的就是parfor&am…...

建木使用进阶-创建密钥管理

阿丹: 第一次我们进入建木,第一件事情就是配置我们相关的密钥。 解读: 在建木中我们可以进行创建密钥来对我们服务器等密码进行方便的管理。 注意: 登录的时候账号为:admin 密码为:123456 这是初始…...

多模态第2篇:MMGCN代码配置

一、Windows环境 1.创建并激活虚拟环境 #创建虚拟环境命名为mmgcn,指定python版本为3.8 conda create -n mmgcn python3.8 #激活虚拟环境 conda activate mmgcn2.安装pytorch #torch2.0.0 cu118 pip install torch2.0.0cu118 torchvision0.15.1cu118 torchaudio…...

DHCP部署与安全详解

文章目录 一、DHCP是什么?二、DHCP相关概念三、DHCP优点四、DHCP原理1. 客户机发送DHCP Discovery广播包(发现谁是DHCP服务器)2. 服务器响应DHCP Offer广播包3. 客户机发送DHCP Request广播包4. 服务器发送DHCP ACK广播包 五、DHCP续约六、部…...

华为数通HCIP-PIM原理与配置

组播网络概念 组播网络由组播源,组播组成员与组播路由器组成。 组播源的主要作用是发送组播数据。 组播组成员的主要作用是接收组播数据,因此需要通过IGMP让组播网络感知组成员位置与加组信息。 组播路由器的主要作用是将数据从组播源发送到组播组成员。…...

linux 权限

一个文件的权限 我们知道一个文件分为两个部分:1. 文件的内容。 2. 文件的属性 我们对一个文件的操作也就存在以下的一些属性: 这个文件可以被你看到--------- 可读–read—r这个文件可以被你修改----------可写–write–w这个文件可以被编译器编译并执…...

SQL基础使用

SQL的概述 SQL全称: Structured Query Language,结构化查询语言,用于访问和处理数据库的标准的计算机语言。 SQL语言1974年由Boyce和Chamberlin提出,并首先在IBM公司研制的关系数据库系统SystemR上实现。 经过多年发…...

金蝶云星空任意文件读取漏洞复现(0day)

0x01 产品简介 金蝶云星空是一款云端企业资源管理(ERP)软件,为企业提供财务管理、供应链管理以及业务流程管理等一体化解决方案。金蝶云星空聚焦多组织,多利润中心的大中型企业,以 “开放、标准、社交”三大特性为数字…...

linux中readelf命令详解

readelf 用于显示elf格式文件的信息 补充说明 readelf命令 用来显示一个或者多个elf格式的目标文件的信息,可以通过它的选项来控制显示哪些信息。这里的elf-file(s)就表示那些被检查的文件。可以支持32位,64位的elf格式文件,也支持包含elf…...

Python 教程之标准库概览

概要 Python 标准库非常庞大,所提供的组件涉及范围十分广泛,使用标准库我们可以让您轻松地完成各种任务。 以下是一些 Python3 标准库中的模块: 「os 模块」 os 模块提供了许多与操作系统交互的函数,例如创建、移动和删除文件和…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子&#xff08…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...