当前位置: 首页 > news >正文

回归预测 | MATLAB实现PSO-GPR粒子群优化高斯过程回归多输入单输出回归预测

回归预测 | MATLAB实现PSO-GPR粒子群优化高斯过程回归多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现PSO-GPR粒子群优化高斯过程回归多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

1
2
3

4
5

基本介绍

Matlab基于PSO-GPR基于粒子群算法优化高斯过程回归的数据回归预测(完整源码和数据)
1.Matlab实现PSO-GPR基于粒子群算法优化高斯过程回归的多输入单输出回归预测(完整源码和数据)
2.输入多个特征,输出单个变量,多输入单输出回归预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.粒子群算法优化参数为:优化核函数超参数 sigma,标准差,初始噪声标准差;
5.excel数据,方便替换,运行环境2018及以上。

程序设计

  • 完整程序和数据获取方式1,订阅《TSFM统计预测模型》(数据订阅后私信我获取):MATLAB实现PSO-GPR粒子群优化高斯过程回归多输入单输出回归预测,专栏外只能获取该程序。
  • 完整程序和数据获取方式2,(资源处下载):MATLAB实现PSO-GPR粒子群优化高斯过程回归多输入单输出回归预测
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
% restoredefaultpath
%%  导入数据
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
f_ =size(P_train, 1); %输入特征维度
M = size(P_train, 2);
N = size(P_test, 2);
%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  超参数设置
Best_pos = [0.6, 0.7, 30];    % 优化下界%%  仿真测试
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test );
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 数据转置
T_sim1=T_sim1';
T_sim2 =T_sim2';
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%
%决定系数
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%
%均方误差 MSE
mse1 = sum((T_sim1 - T_train).^2)./M;
mse2 = sum((T_sim2 - T_test).^2)./N;
%%
%RPD 剩余预测残差
SE1=std(T_sim1-T_train);
RPD1=std(T_train)/SE1;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
SE=std(T_sim2-T_test);
RPD2=std(T_test)/SE;
%% 平均绝对误差MAE
MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试集误差图
figure  
ERROR3=T_test-T_sim2;
plot(T_test-T_sim2,'b-*','LineWidth',1.5)
xlabel('测试集样本编号')
ylabel('预测误差')
title('测试集预测误差')
grid on;
legend('GPR预测输出误差')
%% 打印出评价指标
disp(['-----------------------误差计算--------------------------'])
disp(['评价结果如下所示:'])
disp(['平均绝对误差MAE为:',num2str(MAE2)])
disp(['均方误差MSE为:       ',num2str(mse2)])
disp(['均方根误差RMSEP为:  ',num2str(error2)])
disp(['决定系数R^2为:  ',num2str(R2)])
disp(['剩余预测残差RPD为:  ',num2str(RPD2)])
disp(['平均绝对百分比误差MAPE为:  ',num2str(MAPE2)])

参考资料

[1]https://blog.csdn.net/kjm13182345320/article/details/124443069?spm=1001.2014.3001.5501
[2]https://blog.csdn.net/kjm13182345320/article/details/124443735?spm=1001.2014.3001.5501

相关文章:

回归预测 | MATLAB实现PSO-GPR粒子群优化高斯过程回归多输入单输出回归预测

回归预测 | MATLAB实现PSO-GPR粒子群优化高斯过程回归多输入单输出回归预测 目录 回归预测 | MATLAB实现PSO-GPR粒子群优化高斯过程回归多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab基于PSO-GPR基于粒子群算法优化高斯过程回归的数据回归预…...

python_PyQt5开发验证K线视觉想法工具V1.1 _增加标记类型_线段

目录 运行情况: 代码: 承接 【python_PyQt5开发验证K线视觉想法工具V1.0】 博文 https://blog.csdn.net/m0_37967652/article/details/131966298 运行情况: 添加线段数据在K线图中用线段绘制出来 代码: 1 线段标记的数据格式…...

中文多模态医学大模型智能分析X光片,实现影像诊断,完成医生问诊多轮对话

项目设计集合(人工智能方向):助力新人快速实战掌握技能、自主完成项目设计升级,提升自身的硬实力(不仅限NLP、知识图谱、计算机视觉等领域):汇总有意义的项目设计集合,助力新人快速实…...

企业服务器数据库被360后缀勒索病毒攻击后采取的措施

近期,360后缀勒索病毒的攻击事件频发,造成很多企业的服务器数据库遭受严重损失。360后缀勒索病毒是Beijingcrypt勒索家族中的一种病毒,该病毒的加密形式较为复杂,目前网络上没有解密工具,只有通过专业的技术人员对其进…...

FFmpeg-两个文件mix重采样以那个为主

ffmpeg -i 2ch-44.1k.wav -i 2ch-16k.wav -filter_complex " \ [0:a][1:a]amixinputs2[aout]" \ -map [aout] -f null -ffmpeg -i 2ch-44.1k.wav -i 2ch-16k.wav -filter_complex " \ [0:a][1:a]amixinputs2[aout]" \ -map [aout] -f null -对比发现&#…...

【WebGL】初探WebGL,我了解到这些

WebGL(Web图形库)是一种强大的技术,允许您在Web浏览器中直接创建交互式的3D图形和动画。它利用现代图形硬件的能力来呈现令人惊叹的视觉效果,使其成为Web开发人员和计算机图形爱好者必备的技能。 WebGL基础知识 WebGL基于OpenGL …...

fwft fifo和standard fifo

fifo共有两种,分别是standard fifo和fwft fifo,其中,前者的latency=1,即rd_en信号有效且fifo非空时,数据会在下一个周期出现在fifo的读数据端口。而后者,即fwft fifo的latency=0,也就是说,rd_en信号有效的当拍,数据就会出现在读端口上。这里,fwft是First-word-Fall-T…...

pdf阅读器哪个好用?这个阅读器别错过

pdf阅读器哪个好用?PDF是一种流行的文件格式,可以保留文档的原始格式、布局和字体。与其他文档格式相比,PDF在不同设备和操作系统上的显示效果更为一致,确保文档内容的准确性和可读性。在阅读一些PDF文件的时候,使用一…...

【LeetCode】下降路径最小和

下降路径最小和 题目描述算法分析编程代码 链接: 下降路径最小和 题目描述 算法分析 编程代码 class Solution { public:int minFallingPathSum(vector<vector<int>>& matrix) {int n matrix.size();vector<vector<int>> dp(n1,vector(n2,INT_M…...

从0到1开发go-tcp框架【2-实现Message模块、解决TCP粘包问题、实现多路由机制】

从0到1开发go-tcp框架【2-实现Message模块、解决TCP粘包问题、实现多路由机制】 1 实现\封装Message模块 zinx/ziface/imessage.go package zifacetype IMessage interface {GetMsdId() uint32GetMsgLen() uint32GetMsgData() []byteSetMsgId(uint32)SetData([]byte)SetData…...

Boost开发指南-3.6weak_ptr

weak_ptr weak_ptr是为配合shared_ptr而引入的一种智能指针&#xff0c;它更像是shared_ptr的一个助手而不是智能指针&#xff0c;因为它不具有普通指针的行为&#xff0c;没有重载 operator*和->。它的最大作用在于协助shared_ptr工作&#xff0c;像旁观者那样观测资源的使…...

Swift 周报 第三十三期

文章目录 前言新闻和社区App 内购买项目和订阅即将实行价格与税率调整为家庭提供安全的 App 体验 提案正在审查的提案 Swift论坛推荐博文话题讨论关于我们 前言 本期是 Swift 编辑组自主整理周报的第二十四期&#xff0c;每个模块已初步成型。各位读者如果有好的提议&#xff…...

网络空间安全及计算机领域常见英语单词及短语——网络安全(一)

目录 网络空间安全常见英语单词没事儿读着玩儿相关知识扫盲 CSDN的小伙伴们&#xff0c;我快回来咯&#xff01;网络空间安全常见英语单词 Cybersecurity 网络安全Network security 网络安全Information security 信息安全Data protection 数据保护Threat analysis 威胁分析Ri…...

Go基准测试Benchmark

Go语言自带了一个强大的测试框架&#xff0c;其中包括基准测试&#xff08;Benchmark&#xff09;功能&#xff0c;基准测试用于测量和评估一段代码的性能。 我们可以通过在Go的测试文件中编写特殊格式的函数来创建基准测试。测试文件的命名遵守原函数名称_test.go 的格式。 基…...

docker容器的基本操作

一、查看Docker的版本信息 [roothuyang1 ~]# docker version 二、查看docker的详细信息 [roothuyang1 ~]# docker info 三、Docker镜像操作 Docker创建容器前需要本地存在对应的镜像&#xff0c;如果本地加载不到相关镜像&#xff0c;Docker默认就会尝试从镜像仓库https://hu…...

MySQL绿色安装和配置

1、 从地址http://dev.mysql.com/downloads/mysql/中选择windows的版本下载。 2、 mysql各个版本的简介 &#xff08;1&#xff09; MySQL Community Server 社区版本&#xff0c;开源免费&#xff0c;但不提供官方技术支持。 &#xff08;2&#xff09; MySQL Enterprise Ed…...

《cuda c编程权威指南》03 - cuda小功能汇总

1. 计时 1.1 linux #include <sys/time.h>double cpuSecond() {struct timeval tp;gettimeofday(&tp, NULL);return ((double)tp.tv_sec (double)tp.tv_usec*1e-6); }// 调用 double start cpuSecond(); kernel_name << <grid, block >> > (ar…...

Java:Java程序通过执行系统命令调用Python脚本

本文实现功能&#xff1a;Java程序调用Python脚本 Python脚本 import sysdef add(x, y):return x yif __name__ "__main__":print(add(int(sys.argv[1]), int(sys.argv[2])))直接执行 $ python math.py 1 2 3Java程序调用Python脚本 package io.github.mouday.…...

this is incompatible with sql_mode=only_full_group_by

查看配置 select global.sql_mode 在sql命令行中输入select sql_mode 能够看到sql_mode配置,如果有ONLY_FULL_GROUP_BY&#xff0c;则需要修改 在mysql5.7.5后&#xff0c;ONLY_FULL_GROUP_BY是默认选项&#xff0c;所以就会导致group by的问题 set sql_mode‘复制去掉ONLY_F…...

GCC编译选项

当使用GCC编译器时&#xff0c;可以根据不同的需求选择适当的编译选项来控制编译过程和生成的代码的行为。以下是一些常见的GCC编译选项的归纳&#xff1a; 优化选项&#xff1a; -O0: 不进行优化&#xff0c;保留原始的C代码结构。-O1: 启用基本优化级别&#xff0c;进行简单…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...