当前位置: 首页 > news >正文

回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测

回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

1

2
3
4
5
6
7
8
9
10
11
12

基本介绍

MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测(完整源码和数据)
1.MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测(完整源码和数据)
2.输入多个特征,输出单个变量,多输入单输出回归预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.蛇群算法优化参数为:学习率,隐含层节点,正则化参数;
5.excel数据,方便替换,运行环境2020及以上。

模型描述

SO-CNN-LSTM蛇群算法是一种用于优化卷积长短期记忆神经网络的算法,用于多输入单输出的回归预测问题。下面我会一步一步地解释这个算法的各个组成部分。
首先,卷积长短期记忆神经网络(Convolutional LSTM)。它是一种结合了卷积神经网络和长短期记忆神经网络的混合模型,能够处理序列数据和图像数据。在卷积LSTM中,卷积层用于提取输入数据的特征,LSTM层则用于对这些特征进行时间依赖性建模,以便对序列数据进行建模。
SO-CNN-LSTM蛇群算法。该算法是一种采用蛇群算法进行优化的算法,它可以帮助我们在训练过程中找到最优的模型参数。在该算法中,我们将卷积LSTM网络的参数作为待优化的变量,使用蛇群算法进行参数搜索。蛇群算法是一种模拟蛇群觅食行为的启发式算法,能够在搜索空间中高效地寻找最优解。多输入单输出回归预测问题。这是一种将多个输入数据映射到一个输出数据的问题。在这种情况下,我们可以使用卷积LSTM网络来处理每个输入数据,然后将它们的结果合并在一起,得到最终的输出结果。在训练过程中,我们可以使用已知的输入和输出数据来训练模型,以便它能够对输入数据进行准确的预测。总的来说,SO-CNN-LSTM蛇群算法是一种用于优化卷积长短期记忆神经网络的算法,用于多输入单输出的回归预测问题。它能够帮助我们在训练过程中找到最优的模型参数,以便我们可以对输入数据进行准确的预测。

6

程序设计

  • 完整源码和数据获取方式1:私信博主或同等价值程序兑换;
  • 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取):回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测
%%  获取最优种群for j = 1 : SearchAgentsif(fitness_new(j) < GBestF)GBestF = fitness_new(j);GBestX = X_new(j, :);endend%%  更新种群和适应度值pop_new = X_new;fitness = fitness_new;%%  更新种群 [fitness, index] = sort(fitness);for j = 1 : SearchAgentspop_new(j, :) = pop_new(index(j), :);end%%  得到优化曲线curve(i) = GBestF;avcurve(i) = sum(curve) / length(curve);
end%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam'MaxEpochs', 20, ...                              % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', InitialLearnRate, ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率'LearnRateDropFactor',0.2, ...                    % 学习率调整因子'L2Regularization', L2Regularization, ...         % 正则化参数'ExecutionEnvironment', 'gpu',...                 % 训练环境'Verbose', 0, ...                                 % 关闭优化过程'SequenceLength',1,...'MiniBatchSize',10,...'Plots', 'training-progress');                    % 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测

回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现SO-CNN-LS…...

使用UltraISO制作麒麟v10系统盘

大家好&#xff0c;我是早九晚十二&#xff0c;目前是做运维相关的工作。写博客是为了积累&#xff0c;希望大家一起进步&#xff01; 我的主页&#xff1a;早九晚十二 文章目录 1 背景2 准备工作2.1 镜像准备2.2 制作工具2.3 启动U盘 3 制作步骤3.1 找到ISO文件&#xff0c;右…...

【RabbitMQ】之消息的可靠性方案

目录 一、数据丢失场景二、数据可靠性方案 1、生产者丢失消息解决方案2、MQ 队列丢失消息解决方案3、消费者丢失消息解决方案 一、数据丢失场景 MQ 消息数据完整的链路为&#xff1a;从 Producer 发送消息到 RabbitMQ 服务器中&#xff0c;再由 Broker 服务的 Exchange 根据…...

性能测试/负载测试/压力测试之间的区别

做测试一年多来&#xff0c;虽然平时的工作都能很好的完成&#xff0c;但最近突然发现自己在关于测试的整体知识体系上面的了解很是欠缺&#xff0c;所以&#xff0c;在工作之余也做了一些测试方面的知识的补充。不足之处&#xff0c;还请大家多多交流&#xff0c;互相学习。 …...

Mybatis ,Mybatis-plus列表多字段排序,包含sql以及warpper

根据 mybatis 根据多字段排序已经wrapper 根据多字段排序 首先根据咱们返回前端的数据列来规划好排序字段 如下&#xff1a; 这里的字段为返回VO的字段,要转换成数据库字段然后加入到排序中 示例&#xff0c;穿了 surname,cerRank 多字段,然后是倒序 false 首先创建好映射&am…...

sonarqube PHP编码规范检查

一、PSR规范整理 PHP 已有的编码规范如下 https://blog.csdn.net/qq_40876291/article/details/103848172 1.1 基本编码规范&#xff1a;PSR1 官网规范链接 https://www.php-fig.org/psr/psr-1/ 文件只能使用<?php和<?标记。文件必须仅使用UTF-8&#xff0c;而不使…...

Kylin 麒麟 Qt软件 QtCreator 中文输入法问题

Kylin 麒麟 Qt软件 QtCreator 中文输入法问题 背景&#xff1a; QtCreator 和程序在麒麟系统下没法进行输入&#xff0c;或没法进行输入法的切换。 包括麒麟自带默认搜狗输入法的切换也不行。 使用下面的命令进行安装后&#xff0c;可以正常在QtCreator和程序中使用输入法。 …...

租赁固定资产管理

智能租赁资产管理系统可以为企业单位提供RFID资产管理系统。移动APP资产管理&#xff0c;准确总结易损耗品和固定资金&#xff0c;从入库到仓库库存实时跟踪&#xff0c;控制出库和入库的全过程。同时&#xff0c;备件和耗材与所属资产设备有关&#xff0c;便于备件的申请和管理…...

【Kubernetes】Kubernetes的概念

Kubernetes 一、Kubernetes 概述1.Kubernetes 是什么?2. Kubernetes 的作用3. 为什么要用 Kubernetes?4. Kubernetes 的概念5. Kubernetes 的主要功能6. Kubernetes 集群架构与组件二、Kubernetes 的组件1. Master 组件1.1 Kube-apiserver1.2 Kube-controller-manager1.3 Kub…...

抖音短视频seo源码矩阵系统开发

一、前言&#xff1a; 抖音SEO源码矩阵系统开发是一项专为抖音平台设计的SEO优化系统&#xff0c;能够帮助用户提升抖音视频的搜索排名和曝光度。为了确保系统运行正常&#xff0c;需要安装FFmpeg和FFprobe工具。FFmpeg是一个用于处理多媒体数据的开源工具集&#xff0c;而FFpr…...

npm install pnpm -g报错解决!

目录 报错信息&#xff1a;&#xff08;反正就是各种err&#xff09; 报错分析&#xff1a; 错误处理&#xff1a; 其它pnpm报错传送门&#xff1a; 报错信息&#xff1a;&#xff08;反正就是各种err&#xff09; npm ERR! code EPERM npm ERR! syscall mkdir npm ERR! pa…...

vue2、vue3生命周期详解以及对比

文章目录 对比vue2-vue3vue3生命周期生命周期的主要阶段详情 vue2 生命周期生命周期钩子函数 总共11个 常用的8个按照这四个阶段我们对应有八个生命周期钩子函数vue生命周期使用场景 对比vue2-vue3 如果熟悉vue2的话&#xff0c;vue3信手拈来&#xff0c;看图 vue3生命周期 on…...

JSON动态生成表格

<!DOCTYPE html> <html><head><meta charset"utf-8"><title></title></head><body><script>var fromjava"{\"total\":3,\"students\":[{\"name\":\"张三\",\&q…...

C# Winform中使用SendMessage方法(发送消息与接收消息)

C# Winform窗口间消息通知&#xff0c;使用Windows API SendMessage方法跨进程实现消息发送&#xff0c;重写WndProc方法接收消息并消息处理 主要使用到如下三个方法函数&#xff1a; WndProc&#xff1a;主要用在拦截并处理系统消息和自定义消息 可以重写WndProc函数&#xf…...

Netty各组件基本用法、入站和出站详情、群聊系统的实现、粘包和拆包

Netty Bootstrap和ServerBootstrapFuture和ChannelFutureChannelSelectorNioEventLoop和NioEventLoopGroupByteBuf示例代码 Channel相关组件入站详情出站详情对象编解码ProtoBuf和ProtoStuffnetty实现群聊系统粘包和拆包TCP协议特点举个例子 Bootstrap和ServerBootstrap Boots…...

Day03-作业(AxiosElementUI)

作业1&#xff1a; 根据需求完成如下页面数据列表展示 需求&#xff1a;Vue挂载完成后,通过axios发送异步请求到服务端,获取学生列表数据,并通过Vue展示在页面上 获取数据url&#xff1a;http://yapi.smart-xwork.cn/mock/169327/student 素材&#xff1a; <!DOCTYPE html…...

低代码开发平台源码:基于模型驱动,内置功能强大的建模引擎,零代码也能快速创建智能化、移动化的企业应用程序

管理后台低代码PaaS平台是一款基于 Salesforce Platform 的开源替代方案&#xff0c;旨在为企业提供高效、灵活、易于使用的低代码开发平台。低代码PaaS平台的10大核心引擎功能:1.建模引擎 2.移动引擎 3.流程引擎 4.页面引擎 5.报表引擎 6.安全引擎 7.API引擎 8.应用集成引擎 9…...

下载JMeter的历史版本——个人推荐5.2.1版本

官网地址&#xff1a;https://archive.apache.org/dist/jmeter/binaries/...

2023-07-30 LeetCode每日一题(环形链表 II)

2023-07-30每日一题 一、题目编号 142. 环形链表 II二、题目链接 点击跳转到题目位置 三、题目描述 给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返回 null。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 n…...

设计模式——简单工厂模式

1 概述 将创造对象的工作交给一个单独的类来实现 &#xff0c;这个单独的类就是工厂。 2 实现 假设要做一个计算器的需求&#xff0c;通常我们想到的是这样写&#xff1a; package com.example.easyfactory;import java.util.Scanner;public class Demo1 {public static vo…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...