当前位置: 首页 > news >正文

回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测

回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

1

2
3
4
5
6
7
8
9
10
11
12

基本介绍

MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测(完整源码和数据)
1.MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测(完整源码和数据)
2.输入多个特征,输出单个变量,多输入单输出回归预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.蛇群算法优化参数为:学习率,隐含层节点,正则化参数;
5.excel数据,方便替换,运行环境2020及以上。

模型描述

SO-CNN-LSTM蛇群算法是一种用于优化卷积长短期记忆神经网络的算法,用于多输入单输出的回归预测问题。下面我会一步一步地解释这个算法的各个组成部分。
首先,卷积长短期记忆神经网络(Convolutional LSTM)。它是一种结合了卷积神经网络和长短期记忆神经网络的混合模型,能够处理序列数据和图像数据。在卷积LSTM中,卷积层用于提取输入数据的特征,LSTM层则用于对这些特征进行时间依赖性建模,以便对序列数据进行建模。
SO-CNN-LSTM蛇群算法。该算法是一种采用蛇群算法进行优化的算法,它可以帮助我们在训练过程中找到最优的模型参数。在该算法中,我们将卷积LSTM网络的参数作为待优化的变量,使用蛇群算法进行参数搜索。蛇群算法是一种模拟蛇群觅食行为的启发式算法,能够在搜索空间中高效地寻找最优解。多输入单输出回归预测问题。这是一种将多个输入数据映射到一个输出数据的问题。在这种情况下,我们可以使用卷积LSTM网络来处理每个输入数据,然后将它们的结果合并在一起,得到最终的输出结果。在训练过程中,我们可以使用已知的输入和输出数据来训练模型,以便它能够对输入数据进行准确的预测。总的来说,SO-CNN-LSTM蛇群算法是一种用于优化卷积长短期记忆神经网络的算法,用于多输入单输出的回归预测问题。它能够帮助我们在训练过程中找到最优的模型参数,以便我们可以对输入数据进行准确的预测。

6

程序设计

  • 完整源码和数据获取方式1:私信博主或同等价值程序兑换;
  • 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取):回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测
%%  获取最优种群for j = 1 : SearchAgentsif(fitness_new(j) < GBestF)GBestF = fitness_new(j);GBestX = X_new(j, :);endend%%  更新种群和适应度值pop_new = X_new;fitness = fitness_new;%%  更新种群 [fitness, index] = sort(fitness);for j = 1 : SearchAgentspop_new(j, :) = pop_new(index(j), :);end%%  得到优化曲线curve(i) = GBestF;avcurve(i) = sum(curve) / length(curve);
end%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam'MaxEpochs', 20, ...                              % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', InitialLearnRate, ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率'LearnRateDropFactor',0.2, ...                    % 学习率调整因子'L2Regularization', L2Regularization, ...         % 正则化参数'ExecutionEnvironment', 'gpu',...                 % 训练环境'Verbose', 0, ...                                 % 关闭优化过程'SequenceLength',1,...'MiniBatchSize',10,...'Plots', 'training-progress');                    % 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测

回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测 目录 回归预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现SO-CNN-LS…...

使用UltraISO制作麒麟v10系统盘

大家好&#xff0c;我是早九晚十二&#xff0c;目前是做运维相关的工作。写博客是为了积累&#xff0c;希望大家一起进步&#xff01; 我的主页&#xff1a;早九晚十二 文章目录 1 背景2 准备工作2.1 镜像准备2.2 制作工具2.3 启动U盘 3 制作步骤3.1 找到ISO文件&#xff0c;右…...

【RabbitMQ】之消息的可靠性方案

目录 一、数据丢失场景二、数据可靠性方案 1、生产者丢失消息解决方案2、MQ 队列丢失消息解决方案3、消费者丢失消息解决方案 一、数据丢失场景 MQ 消息数据完整的链路为&#xff1a;从 Producer 发送消息到 RabbitMQ 服务器中&#xff0c;再由 Broker 服务的 Exchange 根据…...

性能测试/负载测试/压力测试之间的区别

做测试一年多来&#xff0c;虽然平时的工作都能很好的完成&#xff0c;但最近突然发现自己在关于测试的整体知识体系上面的了解很是欠缺&#xff0c;所以&#xff0c;在工作之余也做了一些测试方面的知识的补充。不足之处&#xff0c;还请大家多多交流&#xff0c;互相学习。 …...

Mybatis ,Mybatis-plus列表多字段排序,包含sql以及warpper

根据 mybatis 根据多字段排序已经wrapper 根据多字段排序 首先根据咱们返回前端的数据列来规划好排序字段 如下&#xff1a; 这里的字段为返回VO的字段,要转换成数据库字段然后加入到排序中 示例&#xff0c;穿了 surname,cerRank 多字段,然后是倒序 false 首先创建好映射&am…...

sonarqube PHP编码规范检查

一、PSR规范整理 PHP 已有的编码规范如下 https://blog.csdn.net/qq_40876291/article/details/103848172 1.1 基本编码规范&#xff1a;PSR1 官网规范链接 https://www.php-fig.org/psr/psr-1/ 文件只能使用<?php和<?标记。文件必须仅使用UTF-8&#xff0c;而不使…...

Kylin 麒麟 Qt软件 QtCreator 中文输入法问题

Kylin 麒麟 Qt软件 QtCreator 中文输入法问题 背景&#xff1a; QtCreator 和程序在麒麟系统下没法进行输入&#xff0c;或没法进行输入法的切换。 包括麒麟自带默认搜狗输入法的切换也不行。 使用下面的命令进行安装后&#xff0c;可以正常在QtCreator和程序中使用输入法。 …...

租赁固定资产管理

智能租赁资产管理系统可以为企业单位提供RFID资产管理系统。移动APP资产管理&#xff0c;准确总结易损耗品和固定资金&#xff0c;从入库到仓库库存实时跟踪&#xff0c;控制出库和入库的全过程。同时&#xff0c;备件和耗材与所属资产设备有关&#xff0c;便于备件的申请和管理…...

【Kubernetes】Kubernetes的概念

Kubernetes 一、Kubernetes 概述1.Kubernetes 是什么?2. Kubernetes 的作用3. 为什么要用 Kubernetes?4. Kubernetes 的概念5. Kubernetes 的主要功能6. Kubernetes 集群架构与组件二、Kubernetes 的组件1. Master 组件1.1 Kube-apiserver1.2 Kube-controller-manager1.3 Kub…...

抖音短视频seo源码矩阵系统开发

一、前言&#xff1a; 抖音SEO源码矩阵系统开发是一项专为抖音平台设计的SEO优化系统&#xff0c;能够帮助用户提升抖音视频的搜索排名和曝光度。为了确保系统运行正常&#xff0c;需要安装FFmpeg和FFprobe工具。FFmpeg是一个用于处理多媒体数据的开源工具集&#xff0c;而FFpr…...

npm install pnpm -g报错解决!

目录 报错信息&#xff1a;&#xff08;反正就是各种err&#xff09; 报错分析&#xff1a; 错误处理&#xff1a; 其它pnpm报错传送门&#xff1a; 报错信息&#xff1a;&#xff08;反正就是各种err&#xff09; npm ERR! code EPERM npm ERR! syscall mkdir npm ERR! pa…...

vue2、vue3生命周期详解以及对比

文章目录 对比vue2-vue3vue3生命周期生命周期的主要阶段详情 vue2 生命周期生命周期钩子函数 总共11个 常用的8个按照这四个阶段我们对应有八个生命周期钩子函数vue生命周期使用场景 对比vue2-vue3 如果熟悉vue2的话&#xff0c;vue3信手拈来&#xff0c;看图 vue3生命周期 on…...

JSON动态生成表格

<!DOCTYPE html> <html><head><meta charset"utf-8"><title></title></head><body><script>var fromjava"{\"total\":3,\"students\":[{\"name\":\"张三\",\&q…...

C# Winform中使用SendMessage方法(发送消息与接收消息)

C# Winform窗口间消息通知&#xff0c;使用Windows API SendMessage方法跨进程实现消息发送&#xff0c;重写WndProc方法接收消息并消息处理 主要使用到如下三个方法函数&#xff1a; WndProc&#xff1a;主要用在拦截并处理系统消息和自定义消息 可以重写WndProc函数&#xf…...

Netty各组件基本用法、入站和出站详情、群聊系统的实现、粘包和拆包

Netty Bootstrap和ServerBootstrapFuture和ChannelFutureChannelSelectorNioEventLoop和NioEventLoopGroupByteBuf示例代码 Channel相关组件入站详情出站详情对象编解码ProtoBuf和ProtoStuffnetty实现群聊系统粘包和拆包TCP协议特点举个例子 Bootstrap和ServerBootstrap Boots…...

Day03-作业(AxiosElementUI)

作业1&#xff1a; 根据需求完成如下页面数据列表展示 需求&#xff1a;Vue挂载完成后,通过axios发送异步请求到服务端,获取学生列表数据,并通过Vue展示在页面上 获取数据url&#xff1a;http://yapi.smart-xwork.cn/mock/169327/student 素材&#xff1a; <!DOCTYPE html…...

低代码开发平台源码:基于模型驱动,内置功能强大的建模引擎,零代码也能快速创建智能化、移动化的企业应用程序

管理后台低代码PaaS平台是一款基于 Salesforce Platform 的开源替代方案&#xff0c;旨在为企业提供高效、灵活、易于使用的低代码开发平台。低代码PaaS平台的10大核心引擎功能:1.建模引擎 2.移动引擎 3.流程引擎 4.页面引擎 5.报表引擎 6.安全引擎 7.API引擎 8.应用集成引擎 9…...

下载JMeter的历史版本——个人推荐5.2.1版本

官网地址&#xff1a;https://archive.apache.org/dist/jmeter/binaries/...

2023-07-30 LeetCode每日一题(环形链表 II)

2023-07-30每日一题 一、题目编号 142. 环形链表 II二、题目链接 点击跳转到题目位置 三、题目描述 给定一个链表的头节点 head &#xff0c;返回链表开始入环的第一个节点。 如果链表无环&#xff0c;则返回 null。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 n…...

设计模式——简单工厂模式

1 概述 将创造对象的工作交给一个单独的类来实现 &#xff0c;这个单独的类就是工厂。 2 实现 假设要做一个计算器的需求&#xff0c;通常我们想到的是这样写&#xff1a; package com.example.easyfactory;import java.util.Scanner;public class Demo1 {public static vo…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...