LeetCode 刷题之 BFS 广度优先搜索【Python实现】
1. BFS 算法框架
BFS:用来搜索 最短路径 比较合适,如:求二叉树最小深度、最少步数、最少交换次数,一般与 队列 搭配使用,空间复杂度比DFS大很多DFS:适合搜索全部的解,如:寻找最短距离,一般与 栈 搭配使用
def BFS(start, target):"""计算从 start 到 target 的最近距离"""q = [] # 队列,先进先出visited = {} # 避免走回头路q.append(start) # 将起点加入队列visited.add(start) step = 0 # 记录扩散步数while q:for i in range(len(q)):cur = q.pop()# 判断是否达到终点if cur == target:return step# 将 cur 相邻的节点加入队列for j in cur.adj():if j not in visited:q.insert(0, j) # 队列:先进先出visited.add(j)# 更新步数step += 1
2. 二叉树的最小深度
111. 二叉树的最小深度
给定一个二叉树,找出其最小深度。最小深度是从根节点到最近叶子节点的最短路径上的节点数量。说明:叶子节点是指没有子节点的节点。输入:root = [3,9,20,null,null,15,7]
输出:2
示例 2:输入:root = [2,null,3,null,4,null,5,null,6]
输出:5提示:树中节点数的范围在 [0, 105] 内
-1000 <= Node.val <= 1000
题解:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def minDepth(self, root: TreeNode) -> int:if not root:return 0q = [root]step = 1while q:size = len(q)for i in range(size):node = q.pop(0)# 判断是否达到终点,结束条件if node.left == None and node.right == None:return step# 将相邻节点添加到队列if node.left != None:q.append(node.left)if node.right != None:q.append(node.right)# 更新步数step += 1return stepif __name__ == '__main__':# root = [3,9,20,null,null,15,7]root = TreeNode(3)node1 = TreeNode(9)node2 = TreeNode(20)node3 = TreeNode(15)node4 = TreeNode(7)root.left = node1root.right = node2node2.left = node3node2.right = node4s = Solution()print(s.minDepth(root))
3. 二叉树的层序遍历
102. 二叉树的层序遍历
给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。示例 1:输入:root = [3,9,20,null,null,15,7]
输出:[[3],[9,20],[15,7]]
示例 2:输入:root = [1]
输出:[[1]]
示例 3:输入:root = []
输出:[]提示:树中节点数目在范围 [0, 2000] 内
-1000 <= Node.val <= 1000
题解:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:def levelOrder(self, root: TreeNode) -> List[List[int]]:if root == None:return []q = [root]res = []while q:level = [] # 记录每层节点的值for i in range(len(q)):node = q.pop()level.append(node.val)# 说明该节点没有左右节点了if node.left == None and node.right == None:continueif node.left != None:q.insert(0, node.left)if node.right != None:q.insert(0, node.right)# 将每层的结果添加到 resres.append(level)return res
4. 打开转盘锁
752. 打开转盘锁
你有一个带有四个圆形拨轮的转盘锁。每个拨轮都有10个数字: '0', '1', '2', '3', '4', '5', '6', '7', '8', '9' 。每个拨轮可以自由旋转:例如把 '9' 变为 '0','0' 变为 '9' 。每次旋转都只能旋转一个拨轮的一位数字。锁的初始数字为 '0000' ,一个代表四个拨轮的数字的字符串。列表 deadends 包含了一组死亡数字,一旦拨轮的数字和列表里的任何一个元素相同,这个锁将会被永久锁定,无法再被旋转。字符串 target 代表可以解锁的数字,你需要给出解锁需要的最小旋转次数,如果无论如何不能解锁,返回 -1 。示例 1:输入:deadends = ["0201","0101","0102","1212","2002"], target = "0202"
输出:6
解释:
可能的移动序列为 "0000" -> "1000" -> "1100" -> "1200" -> "1201" -> "1202" -> "0202"。
注意 "0000" -> "0001" -> "0002" -> "0102" -> "0202" 这样的序列是不能解锁的,
因为当拨动到 "0102" 时这个锁就会被锁定。
示例 2:输入: deadends = ["8888"], target = "0009"
输出:1
解释:把最后一位反向旋转一次即可 "0000" -> "0009"。
示例 3:输入: deadends = ["8887","8889","8878","8898","8788","8988","7888","9888"], target = "8888"
输出:-1
解释:无法旋转到目标数字且不被锁定。提示:1 <= deadends.length <= 500
deadends[i].length == 4
target.length == 4
target 不在 deadends 之中
target 和 deadends[i] 仅由若干位数字组成
题解:
class Solution:def openLock(self, deadends: List[str], target: str) -> int:if target == "0000":return 0visited = {"0000"} # 记录已经穷举过的密码,防止走回头路q = ["0000"]step = 0 # 步数while q:for i in range(len(q)):num = q.pop()# 若刚好是目标就退出if num == target:return stepif num in deadends:continue# 拨动密码锁,将一个节点的未遍历相邻节点加入队列for j in range(4):# 向上拨动up = self.plus_one(num, j)# 向下拨动down = self.minus_one(num, j)# 若已经访问过则不添加到 visitedif up not in visited:q.insert(0, up)visited.add(up)if down not in visited:q.insert(0, down) visited.add(down)# 增加步数step += 1return -1 def plus_one(self, num, j):a = list(num)if a[j] == "9":a[j] = "0"else:a[j] = str(int(a[j]) + 1)return "".join(a)def minus_one(self, num, j):a = list(num)if a[j] == "0":a[j] = "9"else:a[j] = str(int(a[j]) -1)return "".join(a)
参考:BFS 算法框架套路详解
5. 钥匙和房间
841. 钥匙和房间
有 n 个房间,房间按从 0 到 n - 1 编号。最初,除 0 号房间外的其余所有房间都被锁住。你的目标是进入所有的房间。然而,你不能在没有获得钥匙的时候进入锁住的房间。当你进入一个房间,你可能会在里面找到一套不同的钥匙,每把钥匙上都有对应的房间号,即表示钥匙可以打开的房间。你可以拿上所有钥匙去解锁其他房间。给你一个数组 rooms 其中 rooms[i] 是你进入 i 号房间可以获得的钥匙集合。如果能进入 所有 房间返回 true,否则返回 false。示例 1:输入:rooms = [[1],[2],[3],[]]
输出:true
解释:
我们从 0 号房间开始,拿到钥匙 1。
之后我们去 1 号房间,拿到钥匙 2。
然后我们去 2 号房间,拿到钥匙 3。
最后我们去了 3 号房间。
由于我们能够进入每个房间,我们返回 true。
示例 2:输入:rooms = [[1,3],[3,0,1],[2],[0]]
输出:false
解释:我们不能进入 2 号房间。提示:n == rooms.length
2 <= n <= 1000
0 <= rooms[i].length <= 1000
1 <= sum(rooms[i].length) <= 3000
0 <= rooms[i][j] < n
所有 rooms[i] 的值 互不相同
题解:
class Solution:def canVisitAllRooms(self, rooms: List[List[int]]) -> bool:visited = {0} # 记录已经穷举过的钥匙,防止走回头路queue = [0]while queue:index_keys = queue.pop()for i in rooms[index_keys]:if i not in visited:visited.add(i)queue.insert(0, i)return len(visited) == len(rooms)
这个题还可以用 DFS,只需将 queue.insert 换成 queue.append 即可
参考:7行DFS 8行BFS 两种方法 三种实现 超详细趣味0基础解 Python
6. BFS 遍历图

# -- coding: utf-8 --def bfs(_graph, s):"""BFS 遍历 图:param _graph: 图:param s: 从哪个点开始遍历:return:"""q = [s]visited = {s}while q:vertex = q.pop()nodes = _graph[vertex]for node in nodes:if node not in visited:visited.add(node)q.insert(0, node)print(vertex)if __name__ == '__main__':# 图可以抽象为一个字典,key 表示当前节点,value 为该节点的下个节点集合graph = {"A": ["B", "C"],"B": ["A", "C", "D"],"C": ["A", "B", "D", "E"],"D": ["B", "C", "E", "F"],"E": ["C", "D"],"F": ["D"],}bfs(graph, "A") # 从 A 点开始,输出 A、B、C、D、E、F
参考:[Python] BFS和DFS算法(第1讲)
相关文章:
LeetCode 刷题之 BFS 广度优先搜索【Python实现】
1. BFS 算法框架 BFS:用来搜索 最短路径 比较合适,如:求二叉树最小深度、最少步数、最少交换次数,一般与 队列 搭配使用,空间复杂度比 DFS 大很多DFS:适合搜索全部的解,如:寻找最短…...
Hadoop01【尚硅谷】
大数据学习笔记 大数据概念 大数据:指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 主要解决,海量数据的存储…...
Echarts 配置横轴竖轴指示线,更换颜色、线型和大小
第018个点击查看专栏目录本示例是描述如何在Echarts上配置横轴竖轴指示线,更换颜色、线型和大小。方法很简单,参考示例源代码。 文章目录示例效果示例源代码(共85行)相关资料参考专栏介绍示例效果 示例源代码(共85行&a…...
OpenAI 官方API Java版SDK,两行代码即可调用。包含GhatGPT问答接口。
声明:这是一个非官方的社区维护的库。 已经支持OpenAI官方的全部api,有bug欢迎朋友们指出,互相学习。 注意:由于这个接口: https://platform.openai.com/docs/api-reference/files/retrieve-content 免费用户无法使…...
SpringBoot 日志文件
(一)日志文件有什么用?除了发现和定位问题之外,我们还可以通过日志实现以下功能:记录用户登录日志,以便分析用户是正常登录还是恶意破解用户。记录系统的操作日志,以便数据恢复和定位操作 。记录程序的执行时间&#x…...
SQL71 检索供应商名称
描述Vendors表有字段供应商名称(vend_name)、供应商国家(vend_country)、供应商州(vend_state)vend_namevend_countryvend_stateappleUSACAvivoCNAshenzhenhuaweiCNAxian【问题】编写 SQL 语句,…...
02:入门篇 - 漫谈 CTK
作者: 一去、二三里 个人微信号: iwaleon 微信公众号: 高效程序员 十万个为什么 五千个在哪里?七千个怎么办?十万个为什么?。。。生活中,有很多奥秘在等着我们去思考、揭示! 同样地,在使用 CTK 时,很多小伙伴一定也存在诸多疑问: 为什么 CTK Plugin Framework 要借…...
SpringBoot常用注解
SpringBootApplication注解包含如下三个SpringBootConfigurationEnableAutoConfigurationComponentScanSpringBootConfiguration等同于Configuration,是属于spring的一个配置类这里的 Configuration 对我们来说并不陌生,它就是 JavaConfig 形式的 Spring…...
RBAC权限模型
什么是RBAC权限模型? RBAC是基于角色的访问控制,在RBAC中,权限与角色相关联,用户通过成为适当角色的成员而得到这些角色的权限。 1.0级 用户、角色、权限 2.0 权限分级 公司>部门>小组 2.1 权限继承 ps: 这个人是一个小组长…...
【郭东白架构课 模块一:生存法则】07|法则三:架构师如何找到自己的商业模式?
你好,我是郭东白,今天我们来聊聊架构活动中对商业价值的考量。 今天我们要讲的是架构师的第三个生存法则:作为一个架构师,必须要在有限的资源下最大化架构活动所带来的商业价值。对于任何一个架构活动而言,架构师的可…...
STM32 - 看门狗
独立看门狗 IWDG专业时钟LSI 低功耗仍可以运行对定时的控制比较松喂狗这些时间是按照40kHz时钟给出。实际上,MCU内部的RC频率会在30kHz到60kHz之间变化。此外,即使RC振荡器的频率是精确的,确切的时序仍然依赖于APB接口时钟与RC振荡器时钟之间…...
Redis集群搭建
一、哨兵模式 在 redis3.0之前,redis使用的哨兵架构,它借助 sentinel 工具来监控 master 节点的状态;如果 master 节点异常,则会做主从切换,将一台 slave 作为 master。 哨兵模式的缺点: (1&…...
车载基础软件——AUTOSAR AP典型应用案例
我是穿拖鞋的汉子,魔都中一位坚持长期主义的工程师! 最近不知道为何特别喜欢苏轼的一首词: 缺月挂疏桐,漏断人初静。谁见幽人独往来,缥缈孤鸿影。 惊起却回头,有恨无人省。拣尽寒枝不肯栖,寂寞…...
消息中间件----内存数据库 Redis7(第3章 Redis 命令)
Redis 根据命令所操作对象的不同,可以分为三大类:对 Redis 进行基础性操作的命令,对 Key 的操作命令,对 Value 的操作命令。3.1 Redis 基本命令首先通过 redis-cli 命令进入到 Redis 命令行客户端,然后再运行下面的命令…...
react-03-react-router-dom-路由
react-router-dom:react路由 印记中文:react-router-dom 1、路由原理 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>前端路由的基石_history</title> </head> <body><a hre…...
2自由度悬架LQR控制
目录 1 悬架系统 1.1 悬架结构示意图 1.2 悬架数学模型 1.3 路面激励 2.仿真分析 2.1simulink模型 2.2 仿真结果 2.3 结论 3. 总结 1 悬架系统 1.1 悬架结构示意图 1.2 悬架数学模型 其中:x1为悬架动扰度,x2为车身加速度,x3为轮胎…...
C语言返回类型为指针的一些经典题目(下)
续上一篇文章,上一篇文章题目都很经典,这一篇也不例外。一.返回类型为指针经典题目(下)1.代码(第六题)char *GetMemory3(int num) {char *p (char *)malloc(sizeof(char) * num);return p; } void Test3(void) {char *str NULL;str GetMemory3(100…...
OpenAI 官方api 阅读笔记
网站 API Key concepts Prompts and completions You input some text as a prompt, and the model will generate a text completion that attempts to match whatever context or pattern you gave it. Token 模型通过将文本分解成token来理解和处理, 处理token数量取…...
微服务项目【分布式锁】
创建Redisson模块 第1步:基于Spring Initialzr方式创建zmall-redisson模块 第2步:在zmall-redisson模块中添加相关依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</a…...
JavaWeb5-线程常用属性
目录 1.ID 2.名称 3.状态 4.优先级 5.是否守护线程 5.1.线程类型: ①用户线程(main线程默认是用户线程) ②守护线程(后台/系统线程) 5.2.守护线程作用 5.3.守护线程应用 5.4.守护线程使用 ①在用户线程&am…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
