当前位置: 首页 > news >正文

[Pytorch]卷积运算conv2d

文章目录

  • [Pytorch]卷积运算conv2d
    • 一.F.Conv2d
    • 二.nn.Conv2d
    • 三.nn.Conv2d的运算过程

[Pytorch]卷积运算conv2d

一.F.Conv2d

torch.nn.functional.Conv2d()的详细参数:

conv2d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: str="valid", dilation: Union[_int, _size]=1, groups: _int=1)

即F.Conv2d的主要参数如下:

  • input:输入特征图
  • weight:卷积核
  • bias:偏置参数
  • stride:卷积步长
  • padding:填充
  • dilation:膨胀系数
  • groups:分组卷积

利用F.Conv2d对图像中的暗线进行识别demo:

x = torch.tensor([[[1.0, 4, 1, 4, 5],[0, 5, 3, 2, 1],[21,25, 25, 23, 26],[5, 2, 5, 2, 5],[4, 9, 3, 0, 7]],[[2, 2, 2, 7, 2],[0, 0, 6, 3, 0],[24, 25, 25, 23, 27],[0, 1, 1, 1, 5],[0, 2, 0, 2, 2]],[[2, 2, 2, 1, 0],[7, 2, 4, 3, 1],[24, 23, 28, 23, 24],[0, 0, 2, 2, 5],[5, 2, 4, 5, 2]]
])weight = torch.tensor([[[0.0, 0, 0],[1, 1, 1],[0, 0, 0],],[[0, 0, 0],[1, 1, 1],[0, 0, 0],],[[0, 0, 0],[1, 1, 1],[0, 0, 0],]
])
out = F.conv2d(x, weight=weight.unsqueeze(0), bias=None, stride=1, padding=0)toPIL = transforms.ToPILImage()  # 这个函数可以将张量转为PIL图片,由小数转为0-255之间的像素值
img_PIL = toPIL(x)  # 张量tensor转换为图片
img_PIL.save('./original.png')  # 保存图片;img_PIL.show()可以直接显示图片
torchvision.transforms.ToPILImage()
img_PIL = toPIL(out)
img_PIL.save('./convoluted.png')
print(out)

在这里插入图片描述
在这里插入图片描述

二.nn.Conv2d

pytorch中的卷积运算接口可使用torch.nn中的Conv2d():

torch.nn.Conv2d( in_channels, out_channels, kernel_size, stride,  padding)

pytorch官方的参数解释说明:

 Args:in_channels (int): Number of channels in the input imageout_channels (int): Number of channels produced by the convolutionkernel_size (int or tuple): Size of the convolving kernelstride (int or tuple, optional): Stride of the convolution. Default: 1padding (int, tuple or str, optional): Padding added to all four sides ofthe input. Default: 0padding_mode (str, optional): ``'zeros'``, ``'reflect'``,``'replicate'`` or ``'circular'``. Default: ``'zeros'``dilation (int or tuple, optional): Spacing between kernel elements. Default: 1groups (int, optional): Number of blocked connections from inputchannels to output channels. Default: 1bias (bool, optional): If ``True``, adds a learnable bias to theoutput. Default: ``True``

其中:padding_mode, dilation, groups, bias为可选参数,不是必须给定。

import torch
import torchvision.transforms
from torch import nn
from torchvision import transforms
from torch.nn import functional as Fconvolutional_layer = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=0)
x = torch.tensor([[[231.0, 120, 111, 34, 45],[100, 85, 23, 200, 111],[31, 45, 100, 103, 220],[5, 5, 5, 5, 5],[54, 89, 103, 150, 67]],[[12, 58, 52, 87, 100],[200, 140, 86, 23, 10],[60, 75, 45, 30, 7],[155, 155, 155, 155, 155],[0, 122, 0, 0, 12]],[[12, 12, 12, 11, 10],[67, 12, 45, 23, 1],[56, 12, 5, 10, 8],[0, 0, 0, 0, 0],[5, 12, 34, 56, 12]]
])
out = convolutional_layer(x)
print(out)
print(convolutional_layer.weight.shape)
print(convolutional_layer.bias)

在这里插入图片描述

通过将tensor转为图片模拟以下卷积运算的效果:

toPIL = transforms.ToPILImage()  # 这个函数可以将张量转为PIL图片,由小数转为0-255之间的像素值
img_PIL = toPIL(x)  # 张量tensor转换为图片
img_PIL.save('./original.png')  # 保存图片;img_PIL.show()可以直接显示图
img_PIL = toPIL(out)
img_PIL.save('./convoluted.png')

原特征图:
在这里插入图片描述
卷积运算后的输出特征图:
在这里插入图片描述

三.nn.Conv2d的运算过程

假如nn.Conv2d的定义如下:

convolutional_layer = torch.nn.Conv2d(2, 3, 3, 1, bias=None)

我们研究该函数是如何通过卷积运算将输入通道数2变成输入通道数3的:
原特征图的输入通道数为2,图示橙色和蓝色两个通道:
nn.Conv2d随机初始化3组卷积核,3为输出通道数,其中每组卷积核中卷积核的数量为2(输入通道数),分为橙色的卷积核与蓝色的卷积核,与对应的特征图做卷积运算,每组分别得到两个卷积运算后的特征图,将每组得到的特征图进行对应位置数值的相加操作即可得到最后的nn.Conv2d运算结果。该卷积层的卷积核个数总共为3x2个即输出通道数x输入通道数个。
在这里插入图片描述
下面为了验证上述过程正确,我们使用两个F.conv2d来分别模拟蓝色卷积核和橙色卷积核与对应特征图卷积运算的过程。并将最终的结果相加和直接采用nn.conv2d的结果比较:

convolutional_layer = torch.nn.Conv2d(2, 3, 3, 1, bias=None)
input = torch.randn(1, 2, 4, 4)
output = convolutional_layer(input)
weight = convolutional_layer.weight
out_1 = F.conv2d(input[:, 0, :, :].unsqueeze(1), weight[:, 0, :, :].unsqueeze(1), bias=None, stride=1, padding=0)
out_2 = F.conv2d(input[:, 1, :, :].unsqueeze(1), weight[:, 1, :, :].unsqueeze(1), bias=None, stride=1, padding=0)
print(f'output:\n{output}')
print('-----------------------------------------------------------------')
print(f'out_1 + out_2:\n{out_1 + out_2}')

在这里插入图片描述
最终通过比较发现,卷积运算的结果一致,说明上述nn.conv2d的具体运算过程正确

相关文章:

[Pytorch]卷积运算conv2d

文章目录 [Pytorch]卷积运算conv2d一.F.Conv2d二.nn.Conv2d三.nn.Conv2d的运算过程 [Pytorch]卷积运算conv2d 一.F.Conv2d torch.nn.functional.Conv2d()的详细参数: conv2d(input: Tensor, weight: Tensor, bias: Optional[Tensor]None, stride: Union[_int, _s…...

主流开源监控系统一览

减少故障有两个层面的意思,一个是做好常态预防,不让故障发生;另一个是如果故障发生,要能尽快止损,减少故障时长。而监控的典型作用,就是帮助我们发现及定位故障,这两个环节对于减少故障时长至关…...

爬虫原理详解及requests抓包工具用法介绍

文章目录 一、什么是爬虫?二、爬虫的分类三、网址的构成四、爬虫的基本步骤五、动态页面和静态页面六、伪装请求头七、requests库介绍1. 概念:2. 安装方式(使用镜像源):3. 基本使用:4. response对象对应的方…...

tinkerCAD案例:31. 3D 基元形状简介

tinkerCAD案例:31. 3D 基元形状简介 1 将一个想法从头脑带到现实世界是一次令人兴奋的冒险。在 Tinkercad 中,这将从一个新的设计开始。 在新设计中,简单的原始形状可以通过不同的方式组合成更复杂的形状。 在这个项目中,你将探索…...

Vue2基础一、快速入门

零、文章目录 Vue2基础一、快速入门 1、Vue 概念 (1)为什么学 前端必备技能 岗位多,绝大互联网公司都在使用Vue 提高开发效率 高薪必备技能(Vue2Vue3) (2)Vue是什么 **概念:…...

【POJ-3279】Fliptile(递推+搜索)

POJ-3279. Fliptile(递推搜索) Vjudge链接 题目描述 农场主约翰知道,一头智力得到满足的奶牛是一头快乐的奶牛,它会产更多的奶。他为奶牛安排了一项脑力活动,让它们摆弄一个 M N M N MN 的方格 ( 1 ≤ M ≤ 15 …...

522个matplotlib绘图案例,包含:折线图、散点图、条形图、饼图、直方图、3D图等,源码可直接运行!

文章目录 matplotlib介绍图表介绍折线图(Line Plot)散点图(Scatter Plot)条形图(Bar Plot)饼图(Pie Chart)直方图(Histogram)箱线图(Box Plot&…...

windows安装Elasticsearch8.9.0

官网解压安装好路径(非中文,无空格) 可参考 言之有李LAX csdn http://t.csdn.cn/S2oju本人使用jdk17 修改配置elasticsearch.yml xpack.security.enabled: false xpack.security.http.ssl:enabled: false直接点击bin\elasticsearch.bat…...

用Delphi编写一个通用视频转换工具,让视频格式转换变得更简单

用Delphi编写的简单视频格式转换程序,它使用TComboBox、TOpenDialog和TSaveDialog组件来选择转换格式、选择源视频文件和选择目标视频文件。程序还使用TEdit组件允许用户输入参数,然后将这些组件中的信息拼接成转换命令并在DOS窗口中运行它。 procedure…...

Kafka系列之:安装Know Streaming详细步骤

Kafka系列之:安装Know Streaming详细步骤 一、相关技术博客二、安装elasticsearch1.下载elasticsearch2.创建数据目录3.创建es用户4.修改最大文件数5.解压elasticsearch6.赋予es用户目录权限7.修改es配置8.切换es用户启动elasticsearch三、安装KnowStreaming1.下载KnowStreami…...

绝杀 GETPOST 嵌套的 JSON 参数

JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,常用于Web应用程序中的数据传输。在HTTP数据包信息传递时,JSON扮演着非常正常的角色,因为它是一种通用的数据格式,可以被多种编程语言和应用程…...

Spring 项目过程及如何使用 Spring

文章目录 1.创建 Spring 项目步骤1.1 创建 Maven 项目1.2添加 Spring 框架支持1.3 添加启动项2.如何使用 Spring2.1 存储 Bean 对象2.1.1 创建 Bean对象2.1.2 将 Bean对象注册到容器中 2.2 获取并使用 Bean对象2.2.1 使用 ApplicationContext 获取对象2.2.2 使用 BeanFactory 获…...

信息学奥赛一本通——1258:【例9.2】数字金字塔

文章目录 题目【题目描述】【输入】【输出】【输入样例】【输出样例】 AC代码 题目 【题目描述】 观察下面的数字金字塔。写一个程序查找从最高点到底部任意处结束的路径,使路径经过数字的和最大。每一步可以从当前点走到左下方的点也可以到达右下方的点。 在上面…...

selenium官网文档阅读总结(day 2)

1.selenium元素定位方法 1.1selenium命令 当我们使用chormdriver打开网页后,接下来就要用python操作元素,模拟用户会作出的操作,这些操作元素的方法就是命令。比如 (1) click:点击(按钮,单选框&#xff…...

VMware虚拟机安装VMware tools

一、挂载光驱 执行以下命令来创建 /mnt/cdrom 目录: mkdir -p /mnt/cdrom-p 参数会确保如果 /mnt/cdrom 的上级目录(例如 /mnt)不存在的话也会被创建。 然后,你可以再次尝试挂载光盘: mount /dev/sr0 /mnt/cdrom这次…...

【Linux命令200例】rm用来删除文件或目录(谨慎使用)

🏆作者简介,黑夜开发者,全栈领域新星创作者✌,阿里云社区专家博主,2023年6月csdn上海赛道top4。 🏆本文已收录于专栏:Linux命令大全。 🏆本专栏我们会通过具体的系统的命令讲解加上鲜…...

行云管家荣获CFS第十二届财经峰会 “2023产品科技创新奖”

7月26日至27日,CFS第十二届财经峰会暨2023可持续商业大会在京盛大召开。峰会主题为“激活高质量发展澎湃活力”,超1000位政商领袖、专家学者、企业及媒体代表出席了本次盛会,共同分享新技术新产品新趋势、研判全球新挑战与新变局下企业的机遇…...

uniapp禁止页面滚动

用 touchmove.stop.prevent“moveHandle”&#xff0c;moveHandle 可以用来处理 touchmove 的事件&#xff0c;也可以是一个空函数。 <viewclass“mask” touchmove.stop.prevent“moveHandle”>...

ModuleNotFoundError: No module named ‘_sqlite3‘

前言 遇到报错信息如下&#xff1a; ModuleNotFoundError: No module named _sqlite3解决方式 参考解决方式&#xff1a; https://blog.csdn.net/jaket5219999/article/details/53512071 find / -name _sqlite*.socp /usr/lib64/python3.6/lib-dynload/_sqlite3.cpython-36…...

Rust的入门篇(下)

这篇博客是rust入门篇下 45. 生命周期注释 // 生命周期// 下面代码不能通过编译 // longer 函数取 s1 和 s2 两个字符串切片中较长的一个返回其引用值 // 返回值引用可能会返回过期的引用 // fn longer(s1: &str, s2: &str) -> &str { // if s2.len() >…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...