[Pytorch]卷积运算conv2d
文章目录
- [Pytorch]卷积运算conv2d
- 一.F.Conv2d
- 二.nn.Conv2d
- 三.nn.Conv2d的运算过程
[Pytorch]卷积运算conv2d
一.F.Conv2d
torch.nn.functional.Conv2d()的详细参数:
conv2d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: str="valid", dilation: Union[_int, _size]=1, groups: _int=1)
即F.Conv2d的主要参数如下:
- input:输入特征图
- weight:卷积核
- bias:偏置参数
- stride:卷积步长
- padding:填充
- dilation:膨胀系数
- groups:分组卷积
利用F.Conv2d对图像中的暗线进行识别demo:
x = torch.tensor([[[1.0, 4, 1, 4, 5],[0, 5, 3, 2, 1],[21,25, 25, 23, 26],[5, 2, 5, 2, 5],[4, 9, 3, 0, 7]],[[2, 2, 2, 7, 2],[0, 0, 6, 3, 0],[24, 25, 25, 23, 27],[0, 1, 1, 1, 5],[0, 2, 0, 2, 2]],[[2, 2, 2, 1, 0],[7, 2, 4, 3, 1],[24, 23, 28, 23, 24],[0, 0, 2, 2, 5],[5, 2, 4, 5, 2]]
])weight = torch.tensor([[[0.0, 0, 0],[1, 1, 1],[0, 0, 0],],[[0, 0, 0],[1, 1, 1],[0, 0, 0],],[[0, 0, 0],[1, 1, 1],[0, 0, 0],]
])
out = F.conv2d(x, weight=weight.unsqueeze(0), bias=None, stride=1, padding=0)toPIL = transforms.ToPILImage() # 这个函数可以将张量转为PIL图片,由小数转为0-255之间的像素值
img_PIL = toPIL(x) # 张量tensor转换为图片
img_PIL.save('./original.png') # 保存图片;img_PIL.show()可以直接显示图片
torchvision.transforms.ToPILImage()
img_PIL = toPIL(out)
img_PIL.save('./convoluted.png')
print(out)


二.nn.Conv2d
pytorch中的卷积运算接口可使用torch.nn中的Conv2d():
torch.nn.Conv2d( in_channels, out_channels, kernel_size, stride, padding)
pytorch官方的参数解释说明:
Args:in_channels (int): Number of channels in the input imageout_channels (int): Number of channels produced by the convolutionkernel_size (int or tuple): Size of the convolving kernelstride (int or tuple, optional): Stride of the convolution. Default: 1padding (int, tuple or str, optional): Padding added to all four sides ofthe input. Default: 0padding_mode (str, optional): ``'zeros'``, ``'reflect'``,``'replicate'`` or ``'circular'``. Default: ``'zeros'``dilation (int or tuple, optional): Spacing between kernel elements. Default: 1groups (int, optional): Number of blocked connections from inputchannels to output channels. Default: 1bias (bool, optional): If ``True``, adds a learnable bias to theoutput. Default: ``True``
其中:padding_mode, dilation, groups, bias为可选参数,不是必须给定。
import torch
import torchvision.transforms
from torch import nn
from torchvision import transforms
from torch.nn import functional as Fconvolutional_layer = nn.Conv2d(3, 3, kernel_size=3, stride=1, padding=0)
x = torch.tensor([[[231.0, 120, 111, 34, 45],[100, 85, 23, 200, 111],[31, 45, 100, 103, 220],[5, 5, 5, 5, 5],[54, 89, 103, 150, 67]],[[12, 58, 52, 87, 100],[200, 140, 86, 23, 10],[60, 75, 45, 30, 7],[155, 155, 155, 155, 155],[0, 122, 0, 0, 12]],[[12, 12, 12, 11, 10],[67, 12, 45, 23, 1],[56, 12, 5, 10, 8],[0, 0, 0, 0, 0],[5, 12, 34, 56, 12]]
])
out = convolutional_layer(x)
print(out)
print(convolutional_layer.weight.shape)
print(convolutional_layer.bias)

通过将tensor转为图片模拟以下卷积运算的效果:
toPIL = transforms.ToPILImage() # 这个函数可以将张量转为PIL图片,由小数转为0-255之间的像素值
img_PIL = toPIL(x) # 张量tensor转换为图片
img_PIL.save('./original.png') # 保存图片;img_PIL.show()可以直接显示图
img_PIL = toPIL(out)
img_PIL.save('./convoluted.png')
原特征图:

卷积运算后的输出特征图:

三.nn.Conv2d的运算过程
假如nn.Conv2d的定义如下:
convolutional_layer = torch.nn.Conv2d(2, 3, 3, 1, bias=None)
我们研究该函数是如何通过卷积运算将输入通道数2变成输入通道数3的:
原特征图的输入通道数为2,图示橙色和蓝色两个通道:
nn.Conv2d随机初始化3组卷积核,3为输出通道数,其中每组卷积核中卷积核的数量为2(输入通道数),分为橙色的卷积核与蓝色的卷积核,与对应的特征图做卷积运算,每组分别得到两个卷积运算后的特征图,将每组得到的特征图进行对应位置数值的相加操作即可得到最后的nn.Conv2d运算结果。该卷积层的卷积核个数总共为3x2个即输出通道数x输入通道数个。

下面为了验证上述过程正确,我们使用两个F.conv2d来分别模拟蓝色卷积核和橙色卷积核与对应特征图卷积运算的过程。并将最终的结果相加和直接采用nn.conv2d的结果比较:
convolutional_layer = torch.nn.Conv2d(2, 3, 3, 1, bias=None)
input = torch.randn(1, 2, 4, 4)
output = convolutional_layer(input)
weight = convolutional_layer.weight
out_1 = F.conv2d(input[:, 0, :, :].unsqueeze(1), weight[:, 0, :, :].unsqueeze(1), bias=None, stride=1, padding=0)
out_2 = F.conv2d(input[:, 1, :, :].unsqueeze(1), weight[:, 1, :, :].unsqueeze(1), bias=None, stride=1, padding=0)
print(f'output:\n{output}')
print('-----------------------------------------------------------------')
print(f'out_1 + out_2:\n{out_1 + out_2}')

最终通过比较发现,卷积运算的结果一致,说明上述nn.conv2d的具体运算过程正确
相关文章:
[Pytorch]卷积运算conv2d
文章目录 [Pytorch]卷积运算conv2d一.F.Conv2d二.nn.Conv2d三.nn.Conv2d的运算过程 [Pytorch]卷积运算conv2d 一.F.Conv2d torch.nn.functional.Conv2d()的详细参数: conv2d(input: Tensor, weight: Tensor, bias: Optional[Tensor]None, stride: Union[_int, _s…...
主流开源监控系统一览
减少故障有两个层面的意思,一个是做好常态预防,不让故障发生;另一个是如果故障发生,要能尽快止损,减少故障时长。而监控的典型作用,就是帮助我们发现及定位故障,这两个环节对于减少故障时长至关…...
爬虫原理详解及requests抓包工具用法介绍
文章目录 一、什么是爬虫?二、爬虫的分类三、网址的构成四、爬虫的基本步骤五、动态页面和静态页面六、伪装请求头七、requests库介绍1. 概念:2. 安装方式(使用镜像源):3. 基本使用:4. response对象对应的方…...
tinkerCAD案例:31. 3D 基元形状简介
tinkerCAD案例:31. 3D 基元形状简介 1 将一个想法从头脑带到现实世界是一次令人兴奋的冒险。在 Tinkercad 中,这将从一个新的设计开始。 在新设计中,简单的原始形状可以通过不同的方式组合成更复杂的形状。 在这个项目中,你将探索…...
Vue2基础一、快速入门
零、文章目录 Vue2基础一、快速入门 1、Vue 概念 (1)为什么学 前端必备技能 岗位多,绝大互联网公司都在使用Vue 提高开发效率 高薪必备技能(Vue2Vue3) (2)Vue是什么 **概念:…...
【POJ-3279】Fliptile(递推+搜索)
POJ-3279. Fliptile(递推搜索) Vjudge链接 题目描述 农场主约翰知道,一头智力得到满足的奶牛是一头快乐的奶牛,它会产更多的奶。他为奶牛安排了一项脑力活动,让它们摆弄一个 M N M N MN 的方格 ( 1 ≤ M ≤ 15 …...
522个matplotlib绘图案例,包含:折线图、散点图、条形图、饼图、直方图、3D图等,源码可直接运行!
文章目录 matplotlib介绍图表介绍折线图(Line Plot)散点图(Scatter Plot)条形图(Bar Plot)饼图(Pie Chart)直方图(Histogram)箱线图(Box Plot&…...
windows安装Elasticsearch8.9.0
官网解压安装好路径(非中文,无空格) 可参考 言之有李LAX csdn http://t.csdn.cn/S2oju本人使用jdk17 修改配置elasticsearch.yml xpack.security.enabled: false xpack.security.http.ssl:enabled: false直接点击bin\elasticsearch.bat…...
用Delphi编写一个通用视频转换工具,让视频格式转换变得更简单
用Delphi编写的简单视频格式转换程序,它使用TComboBox、TOpenDialog和TSaveDialog组件来选择转换格式、选择源视频文件和选择目标视频文件。程序还使用TEdit组件允许用户输入参数,然后将这些组件中的信息拼接成转换命令并在DOS窗口中运行它。 procedure…...
Kafka系列之:安装Know Streaming详细步骤
Kafka系列之:安装Know Streaming详细步骤 一、相关技术博客二、安装elasticsearch1.下载elasticsearch2.创建数据目录3.创建es用户4.修改最大文件数5.解压elasticsearch6.赋予es用户目录权限7.修改es配置8.切换es用户启动elasticsearch三、安装KnowStreaming1.下载KnowStreami…...
绝杀 GETPOST 嵌套的 JSON 参数
JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,常用于Web应用程序中的数据传输。在HTTP数据包信息传递时,JSON扮演着非常正常的角色,因为它是一种通用的数据格式,可以被多种编程语言和应用程…...
Spring 项目过程及如何使用 Spring
文章目录 1.创建 Spring 项目步骤1.1 创建 Maven 项目1.2添加 Spring 框架支持1.3 添加启动项2.如何使用 Spring2.1 存储 Bean 对象2.1.1 创建 Bean对象2.1.2 将 Bean对象注册到容器中 2.2 获取并使用 Bean对象2.2.1 使用 ApplicationContext 获取对象2.2.2 使用 BeanFactory 获…...
信息学奥赛一本通——1258:【例9.2】数字金字塔
文章目录 题目【题目描述】【输入】【输出】【输入样例】【输出样例】 AC代码 题目 【题目描述】 观察下面的数字金字塔。写一个程序查找从最高点到底部任意处结束的路径,使路径经过数字的和最大。每一步可以从当前点走到左下方的点也可以到达右下方的点。 在上面…...
selenium官网文档阅读总结(day 2)
1.selenium元素定位方法 1.1selenium命令 当我们使用chormdriver打开网页后,接下来就要用python操作元素,模拟用户会作出的操作,这些操作元素的方法就是命令。比如 (1) click:点击(按钮,单选框ÿ…...
VMware虚拟机安装VMware tools
一、挂载光驱 执行以下命令来创建 /mnt/cdrom 目录: mkdir -p /mnt/cdrom-p 参数会确保如果 /mnt/cdrom 的上级目录(例如 /mnt)不存在的话也会被创建。 然后,你可以再次尝试挂载光盘: mount /dev/sr0 /mnt/cdrom这次…...
【Linux命令200例】rm用来删除文件或目录(谨慎使用)
🏆作者简介,黑夜开发者,全栈领域新星创作者✌,阿里云社区专家博主,2023年6月csdn上海赛道top4。 🏆本文已收录于专栏:Linux命令大全。 🏆本专栏我们会通过具体的系统的命令讲解加上鲜…...
行云管家荣获CFS第十二届财经峰会 “2023产品科技创新奖”
7月26日至27日,CFS第十二届财经峰会暨2023可持续商业大会在京盛大召开。峰会主题为“激活高质量发展澎湃活力”,超1000位政商领袖、专家学者、企业及媒体代表出席了本次盛会,共同分享新技术新产品新趋势、研判全球新挑战与新变局下企业的机遇…...
uniapp禁止页面滚动
用 touchmove.stop.prevent“moveHandle”,moveHandle 可以用来处理 touchmove 的事件,也可以是一个空函数。 <viewclass“mask” touchmove.stop.prevent“moveHandle”>...
ModuleNotFoundError: No module named ‘_sqlite3‘
前言 遇到报错信息如下: ModuleNotFoundError: No module named _sqlite3解决方式 参考解决方式: https://blog.csdn.net/jaket5219999/article/details/53512071 find / -name _sqlite*.socp /usr/lib64/python3.6/lib-dynload/_sqlite3.cpython-36…...
Rust的入门篇(下)
这篇博客是rust入门篇下 45. 生命周期注释 // 生命周期// 下面代码不能通过编译 // longer 函数取 s1 和 s2 两个字符串切片中较长的一个返回其引用值 // 返回值引用可能会返回过期的引用 // fn longer(s1: &str, s2: &str) -> &str { // if s2.len() >…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...
嵌入式常见 CPU 架构
架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集,单周期执行;低功耗、CIP 独立外设;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel(原始…...
MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释
以Module Federation 插件详为例,Webpack.config.js它可能的配置和含义如下: 前言 Module Federation 的Webpack.config.js核心配置包括: name filename(定义应用标识) remotes(引用远程模块࿰…...
VisualXML全新升级 | 新增数据库编辑功能
VisualXML是一个功能强大的网络总线设计工具,专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑(如DBC、LDF、ARXML、HEX等),并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...
