当前位置: 首页 > news >正文

Stable diffusion 三大基础脚本 提示词矩阵,载入提示词,XYZ图表讲解

目录

0.本章讲解 

1.提示词矩阵(prompt matrix)

1.2.提示词矩阵功能选项

1.2.1.把可变部分放在提示词文本的开头

1.2.2.为每张图片使用不同随机种子

1.2.3.选择提示词

1.2.4.选择分割符

1.2.5.宫格图边框(像素)

2.从文本框或文件载入提示词(Prompts from file or textbox)

2.1.语法

2.2.常用参数

3.XYZ图表

3.1.数值类的语法

3.2.XYZ的实际应用


0.本章讲解 

图片

1.提示词矩阵(prompt matrix)

提示词矩阵用于比较不同提示词交替使用对于绘制图片的影响,多个提示词以|为分割点

正向提示词:

masterpiece, best quality,t-shirt, 1girl, |Mountain|blue hair, 

选中提示词矩阵脚本,此时四张图片,对应也会生成四种提示词

①masterpiece,best quality,t-shirt,1girl
②masterpiece,best quality,t-shirt,1girl,Mountain
③masterpiece,best quality,t-shirt,1girl,blue hair,
④masterpiece,best quality,t-shirt,1girl,Mountain,blue hair,

图片

这个脚本会重组需要分割的提示词,组合最大数为N^2, N为|的数量

1.2.提示词矩阵功能选项

图片

1.2.1.把可变部分放在提示词文本的开头

由于sd的提示词越在前面权重越重,勾选这个选项,则生成对应提示词时,提示词会默认在前面

1.2.2.为每张图片使用不同随机种子

勾选这个时,每次生成都会生成不一样的图片,但是一般不勾选,因为这样就没有对比性了

1.2.3.选择提示词

脚本提示词作用域是在正向提示词区域还是反向提示词区域

1.2.4.选择分割符

sd在最终生成提示词的时候,是以逗号分割还是以空格进行分割,就是|替换成逗号还是空格,一般默认为逗号即可 

图片

1.2.5.宫格图边框(像素)

图片之间的边框像素大小,调大一点,容易区分图片

图片

2.从文本框或文件载入提示词(Prompts from file or textbox)

这个脚本就是从文本中指定各种参数用于生成图片,这样就可以进行批量处理

2.1.语法

参数前面加--,多个参数之间用空格分开,以换行进行区分生成多少张图片,如果参数对应的值为文本则需要添加双引号,为数字则不需要

--prompt "city" --prompt "snow mountain"--prompt "steppe"--prompt "steppe" --sampler_name "DPM++ SDE Karras" --seed 2740754650

这会生成四张图片 

分别是

城市

雪山 

大草原

大草原,指定采样方法为:DPM++ SDE Karras ,随机种子是:2740754650

图片

2.2.常用参数

“sd_model”:模型名称

“outpath_samples”:样本输出路径

“outpath_grids”:网格输出路径

“prompt_for_display”:用于展示的提示词

“prompt”:正向提示词

“negative_prompt”:负面提示词

“styles”:提示词模板(你自己设置的提示词模板)

“seed”:随机种子

“subseed_strength”:次级种子强度

“subseed”:次级种子

“seed_resize_from_h”:次级种子高度

“seed_resize_from_w”:次级种子宽度

“sampler_index”:采样器索引

“sampler_name”:采样器名称

“batch_size”:生成批次

“n_iter”:每批数量

“steps”:采样迭代步数

“cfg_scale”:提词相关性

“width”:宽度

“height”:高度

“restore_faces”:面部修复

“tiling”:平铺

“do_not_save_samples”:不保存样本

“do_not_save_grid”:不保存网格

3.XYZ图表

XYZ图表可以比较直观的生成两个参数在不同值下的对比图,主要是用于调试对比

X轴展示时 会固定Y轴的参数,展示X轴数值变化对于Y轴的影响

Y轴展示时 会固定X轴的参数,展示Y轴数值变化对于X轴的影响

Z轴则会将X轴和Y轴组合展示的图片再分组展示

3.1.数值类的语法

当轴值为数字时有以下常用语法

图片

3.2.XYZ的实际应用

1.我们想进行不同的模型在不同的迭代步数下的表现情况

X轴选中迭代步数,Y轴选中模型名

正向提示词

masterpiece, best quality,t-shirt, 1girl, 

图片

图片

当然也可以只固定一个模型,查看某个模型在不同的迭代步数下情况下的生成。

图片

2.不同的提示词在同一随机种子下的表现情况

当我们想知道 运动服 t恤 西装 毛衣 在图片的表现形式,那我们就应该选用 提示词搜索/替换(这里不能使用提示词矩阵,因为提示词矩阵是交替应用的方式)

图片

 sports wear 需要在正向提示词中 不然会报错:

RuntimeError: Prompt S/R did not find sports wear in prompt or negative prompt.

这是因为 "提示词搜索/替换" 中 第一个词语是需要在提示词区域进行搜索,后面的词语会进行替换第一个词语

正向提示词

masterpiece, best quality,1Man, sports wear,

图片

当用完脚本之后,记得关闭脚本,不然会出现各种奇怪的问题导致无法出图。

相关文章:

Stable diffusion 三大基础脚本 提示词矩阵,载入提示词,XYZ图表讲解

目录 0.本章讲解 1.提示词矩阵(prompt matrix) 1.2.提示词矩阵功能选项 1.2.1.把可变部分放在提示词文本的开头 1.2.2.为每张图片使用不同随机种子 1.2.3.选择提示词 1.2.4.选择分割符 1.2.5.宫格图边框(像素) 2.从文本框或文件载入提示词(Pro…...

uniapp uni-combox 下拉提示无匹配项(完美解决--附加源码解决方案及思路)

问题描述 匆匆忙忙又到了周一啦&#xff0c;一大早就来了一个头疼的问题&#xff0c;把我难得团团转&#xff0c;呜呜呜~ 下面我用代码的方式展示出来&#xff0c;看下你的代码是否与我的不同。 解决方案 <uni-forms-item label"名称" name"drugName&quo…...

10. Mybatis 项目的创建

目录 1. Mybatis 概念 2. 第一个 Mybits 查询 2.1 创建数据库和表 2.2 添加 Mybatis 框架支持 2.3 添加配置文件 2.4 配置 MyBatis 中的 XML 路径 2.5 添加业务代码 在学习 Mybatis 之前&#xff0c;我们需要知道 Mybatis 和 Spring 没有任何的关系。如果一定要强调二者…...

历年 Nobel prize in Physics (诺贝尔物理学奖)简介

历年 Fields Medal 与 Nobel prize in Physics 简介 Nobel prize in Physics 1901年12月10日 诺贝尔逝世5周年纪念日首次颁发诺贝尔奖。1916年 第一次世界大战 1914.7 至 1918.11诺贝尔物理学奖空缺1931年诺贝尔物理学奖空缺1934年诺贝尔物理学奖空缺1940年—1942年 第二次世界…...

IDEA中Git面板操作介绍 变基、合并、提取、拉取、签出

IDEA中Git面板操作介绍 变基、合并、提取、拉取、签出 面板介绍 变基、合并 提取、拉取 签出、Checkout 面板介绍 如图&#xff0c;在IDEA的Git面板中&#xff0c;仓库会分为本地仓库和远程仓库&#xff0c;代码仓库里面放的是各个分支。 分支前面的书签&#x1f516;标志…...

Android Studio开发简易APP添加代办事项

创建xml布局页 <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"xmlns:tools="http://schemas.android.com/tools"android:layout_width...

python 统计所有的 仓库 提交者的提交次数

字典去重 YYDS 然后再写入excel 表 yyds #!/bin/env python3 from git.repo import Repo import os import pandas as pdspath "/home/labstation/workqueue/sw" url "git10.0.128.128" date [str(x) for x in range(202307, 202308)] datefmt "%…...

018-从零搭建微服务-系统服务(五)

写在最前 如果这个项目让你有所收获&#xff0c;记得 Star 关注哦&#xff0c;这对我是非常不错的鼓励与支持。 源码地址&#xff08;后端&#xff09;&#xff1a;https://gitee.com/csps/mingyue 源码地址&#xff08;前端&#xff09;&#xff1a;https://gitee.com/csps…...

HarmonyOS 开发基础(三)登录页面单向数据绑定(父组件向子组件传参)

一、目录结构认识 开发软件目录截图部分文件夹说明 文件组织结构图 二、完成单向数据绑定 index.etx // 导出方式直接从文件夹 import MyInput from "../common/commons/myInput" Entry Component /* 组件可以基于struct实现&#xff0c;组件不能有继承关系&am…...

发npm包

重点文件 .github -> workflow -> .yml文件 发自己的包 新建dev分支&#xff0c;合并到master后自动执行 fork别人的包 fork -> base dev新建本地rebase-dev分支 -> 提交push后合并至dev -> dev合并至master后自动执行 值得注意的是&#xff0c;fork别人的…...

<el-empty>

<el-empty> 是 Element UI 框架中提供的一个组件&#xff0c;用于显示空状态的占位内容。Element UI 是一套基于 Vue.js 的组件库&#xff0c;用于构建响应式和易用的用户界面。 <el-empty> 组件在应用中常用于以下场景&#xff1a; 当数据为空时&#xff0c;可以…...

IO流(4)- 序列化流与反序列化流

目录 1. 序列化流与反序列化流的基本介绍 2. 序列化流的基本用法&#xff1f; 3. 序列化流的作用&#xff1f; 4. 反序列化流的基本用法&#xff1f; 5. 反序列化流的作用 6. 序列化流与反序列化流使用时需要注意的细节&#xff08;非常重要&#xff09; 6.1 被序列化的…...

人工智能如何应对 DevOps 监控和可观测性挑战

自 ChatGPT 横空出世之后&#xff0c;AIGC 已成为不可逆转的时代浪潮。在之前的文章中&#xff0c;我们介绍了DevOps 领域中AI的用例&#xff0c;需要回顾可以点击下方链接。在本篇文章中&#xff0c;我将简单聊聊人工智能&#xff08;AI&#xff09;如何通过分析日志和指标来预…...

数字化新时代,VR全景拍摄与制作

导语&#xff1a; 随着科技的飞速发展&#xff0c;数字化图片正在引领新的时代潮流。在这个数字化图片的新时代&#xff0c;VR全景拍摄与制作技术正以其独特的特点和无限的优势&#xff0c;成为数字影像领域的一颗璀璨明星。让我们深入了解VR全景拍摄与制作的特点和优势&#…...

uniapp 权限说明

android.permission.ACCESS_CHECKIN_PROPERTIES 访问登记属性 读取或写入登记check-in数据库属性表的权限 android.permission.ACCESS_COARSE_LOCATION 获取错略位置 通过WiFi或移动基站的方式获取用户错略的经纬度信息,定位精度大概误差在30~1500米 android.permission.ACCESS…...

3D Web轻量化渲染开发工具HOOPS Communicator是什么?

HOOPS Communicator是Tech Soft 3D旗下的主流产品之一&#xff0c;具有强大的、专用的高性能图形内核&#xff0c;是一款专注于基于Web端的高级3D工程应用程序。由HOOPS Server和HOOPS Web Viewer两大部分组成&#xff0c;提供了HOOPS Convertrer、Data Authoring的模型转换和编…...

心法利器[93] | 谈校招:技术面

心法利器 本栏目主要和大家一起讨论近期自己学习的心得和体会&#xff0c;与大家一起成长。具体介绍&#xff1a;仓颉专项&#xff1a;飞机大炮我都会&#xff0c;利器心法我还有。 2022年新一版的文章合集已经发布&#xff0c;累计已经60w字了&#xff0c;获取方式看这里&…...

excel英语翻译让你的数据更容易被理解

从前有一个名叫小明的办公室职员&#xff0c;他每天都要处理大量的数据和报表。然而&#xff0c;由于工作需要&#xff0c;他经常收到来自不同国家的Excel表格&#xff0c;这些表格上的内容都是用各种各样的语言编写的&#xff0c;让他很难理解其中的意思。这时&#xff0c;小明…...

RK3588S之CPU--benchmark(二)

目录 一、引言 二、benchmark测试工具 ------>2.1、Geekbench ------------>2.1.1、下载移植 ------------>2.1.2、跑分结果 ------------>2.1.3、跑分榜 ------>2.2、Spec06 ------------>2.2.1、spec06介绍 ------------>2.2.2、下载移植(包含…...

入侵检查基础

一、结合以下问题对当天内容进行总结 1. 什么是IDS&#xff1f; 2. IDS和防火墙有什么不同&#xff1f; 3. IDS工作原理&#xff1f; 4. IDS的主要检测方法有哪些详细说明&#xff1f; 5. IDS的部署方式有哪些&#xff1f; 6. IDS的签名是什么意思&#xff1f;签名过滤器有什么…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...