当前位置: 首页 > news >正文

[华为OD] 最小传输时延(dijkstra算法)

明天就要面试了我也太紧张了吧

但是终于找到了一个比较好理解的dijkstra的python解法,让我快点把它背下来!!!!

文章目录

  • 题目
  • dijkstra算法的python实现
  • python解答
    • dfs解法
    • dijkstra解法

题目

先把题目放出来

某通信网络中有N个网络结点,用1到N进行标识。网络通过一个有向无环图表示,其中题的边的值表示结点之间的消息传递时延。现给定相连节点之间的时延列表 times[i] = {u,v,w},其中u表示源节点,v表示目的节点,w表示u和v之间的消息传递时延。
请计算给定源结点到目的结点的最小传输时延,如果目的结点不可达,返回-1。

输入描述:
输入的第一行为两个正整数,分别表示网络结点的个数N以及时延列表长度M,用空格分隔。
接下来的M行为两个结点间的时延列表[u,v,w]
输入的最后一行为两个正整数,分别表示源结点和目的结点。

比如:

输入3 3
1 2 11
2 3 13
1 3 50
1 3
输出24

一个有向无环图,用dfs也很好做。这里我们重点看一下dijkstra怎么做。

dijkstra算法的python实现

最短路径算法Dijkstra,主要思想是贪心。每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止。
更具体地来说:
假设我们现在在一个有权图中,图中有n个点,点与点相连的路径上都分配有权重,代表了两点之间的距离。现在有一个起始点i,终点j,如果求i到j的最短距离。

  1. 我们建立一个集合s,把起始点i放进去,然后在与i相邻的边中寻找与i距离最近的点,并把这个点放到集合中去。
  2. 然后第二次遍历与集合中的点相连的点,并更新到起始点的距离,并把距离起始点i最近的点放到集合中去。
  3. 继续上面的做法,每次都在集合中添加一个点。直到没有新的点可以添加进去。

我们来写一个比较简单的python实现。
假设现在有n个节点,同时有一个输入distance距离列表,里面的元素表示的是[u,v,w]即u到v的距离。现在给定起点k,求k到最远的点的最小距离

dist = [float('inf')]*n # 构建一个列表存放n个结点到目标k的距离
dist[k-1] = 0  # 第k个结点到他本身的距离为0g = [[float('inf')] * n for _ in range(n)] # 构建一个矩阵,表示n个结点彼此的距离。
for x, y, dis in distance:g[x-1][y-1] = time  # 按照distance列表更新矩阵中两两结点的距离。used = [False]*n # 判断点是否已经加入了set里面。for _ in range(n):x = -1for y, u in enumerate(used):if not u and (x == -1 or dist[y] < dist[x]): #只考虑没有使用过的节点,寻找结点们到初始点的最小距离。# 毫无疑问,在第一次遍历中,这个距离是0,目标点是我们的源点本身。x = y  # 如果距离小,就用新的点替换掉x。used[x] = True # 每次都使用距离源点最近的点for y, time in enumerate(g[x]):dist[y] = min(dist[y], dist[x]+time)  # 更新相连的结点到源点的距离ans = max(dist)  # 这就是我们要求的k到最远的点的最小距离

dijkstra的时间复杂度是 O ( N 2 ) O(N^2) O(N2).

这个题也可以用dfs的方法来作,遍历到父结点时,更新所有的子结点到源点的距离。dfs解该题的时间复杂度更高一点,是 O ( N N ) O(N^N) O(NN).
同样给出一个解法代码。

map_dict = defaultdict(list)
for u, v, w in distance:map_dict[u].append([v,w])  dist = [float('inf')] * n
def dfs(index, dis):if dis < dist[index-1]:dist[index-1] = disfor v, w in map_dict[index]:dfs(v,dis+w)
dfs(k,0)res = max(dist)

python解答

我们回到题目的python解答上。

dfs解法

首先我们给出一个dfs的解答。
可以看到这个解法和上面的dfs几乎一模一样,区别是这里返回的是源节点到目标点的距离。

def solution(times,src, dist):graph = {}for u,v, w in times:if u not in graph:graph[u] = []graph[u].append([v,w])root = [float('inf')]*N    def dfs(index, dis):if dis<root[index-1]:root[index-1] = disif index in graph:for u, v in graph[index]:dfs(u,dis+v)dfs(src,0)res = root[dist-1]return res if res!=float('inf') else -1

dijkstra解法

这个解法也是和上面的思路一样,只不过在发现x==dis-1的时候,提前break结束了这个循环。

def solution(times, src, dis):g = [[float('inf')]*N for _ in range(N)]for u,v, time in times:g[u-1][v-1] = timedist = [float('inf')]*Ndist[src-1] = 0used = [False]*Nfor i in range(N):x = -1for y, u in enumerate(used):if not u and (x==-1 or dist[y]< dist[x]):x = yif x == dis-1:breakused[x] = Truefor y, time in enumerate(g[x]):dist[y] = min(dist[y],dist[x]+time)return dist[dis-1]

相关文章:

[华为OD] 最小传输时延(dijkstra算法)

明天就要面试了我也太紧张了吧 但是终于找到了一个比较好理解的dijkstra的python解法&#xff0c;让我快点把它背下来&#xff01;&#xff01;&#xff01;&#xff01; 文章目录 题目dijkstra算法的python实现python解答dfs解法dijkstra解法 题目 先把题目放出来 某通信网络…...

问道管理:总资产大于总市值好吗?

在财政领域&#xff0c;总财物和总市值是两个非常重要的指标。总财物是指公司所有的财物&#xff0c;包括固定财物、流动财物、无形财物等&#xff0c;而总市值则是指公司股票在商场上的总价值。当总财物大于总市值时&#xff0c;这是否是一个好的信号呢&#xff1f;咱们将从多…...

IBM Spectrum LSF (“LSF“ ,简称为负载共享设施) 用户案例

IBM Spectrum LSF (“LSF” &#xff0c;简称为负载共享设施) 用户案例 IBM Spectrum LSF (“LSF” &#xff0c;简称为负载共享设施) 软件是业界领先的企业级软件。 LSF 在现有异构 IT 资源之间分配工作&#xff0c;以创建共享&#xff0c;可扩展且容错的基础架构&#xff0c…...

Pytorch深度学习-----神经网络之非线性激活的使用(ReLu、Sigmoid)

系列文章目录 PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用&#xff08;ToTensor&#xff0c;Normalize&#xff0c;Resize &#xff0c;Co…...

Gis入门,使用起止点和两个控制点生成三阶贝塞尔曲线(共四个控制点,线段转曲线)

前言 本章讲解如何在gis地图中使用起止点和两个控制点(总共四个控制点)生成三阶贝塞尔曲线。 二阶贝塞尔曲线请参考上一章《Gis入门,如何根据起止点和一个控制点计算二阶贝塞尔曲线(共三个控制点)》 贝塞尔曲线(Bezier curve)介绍 贝塞尔曲线(Bezier curve)是一种…...

Web-7-深入理解Cookie与Session:实现用户跟踪和数据存储

深入理解Cookie与Session&#xff1a;实现用户跟踪和数据存储 今日目标 1.掌握客户端会话跟踪技术Cookie 2.掌握服务端会话跟踪技术Sesssion 1.会话跟踪技术介绍 会话&#xff1a;用户打开浏览器&#xff0c;访问web服务器的资源&#xff0c;会话建立&#xff0c;直到有一方断…...

Springboot设置Https

1、修改配置文件application.yml&#xff0c;并将*.jks放到resource目录下。 server:port: 8080ssl:key-store: classpath:*.jkskey-store-password: *key-store-type: JKSenabled: truekey-alias: boe.com.cn2、添加http转https的配置 Configuration public class TomcatCon…...

Windows 使用 Linux 子系统,轻轻松松安装多个linux

Windows Subsystem for Linux WSL 简称WSL,是一个在Windows 10\11上能够运行原生Linux二进制可执行文件&#xff08;ELF格式&#xff09;的兼容层。它是由微软与Canonical公司合作开发&#xff0c;其目标是使纯正的Ubuntu、Debian等映像能下载和解压到用户的本地计算机&#…...

中级课程——弱口令(认证崩溃)

文章目录 什么是弱口令密码生成器分类暴力破解万能密码测试环境工具 什么是弱口令 密码生成器 分类 暴力破解 万能密码 or true --测试环境 工具 九头蛇&#xff0c;超级弱口令爆破工具&#xff0c;bp&#xff0c;...

web自动化测试进阶篇05 ——— 界面交互场景测试

&#x1f60f;作者简介&#xff1a;博主是一位测试管理者&#xff0c;同时也是一名对外企业兼职讲师。 &#x1f4e1;主页地址&#xff1a;【Austin_zhai】 &#x1f646;目的与景愿&#xff1a;旨在于能帮助更多的测试行业人员提升软硬技能&#xff0c;分享行业相关最新信息。…...

NICE-SLAM: Neural Implicit Scalable Encoding for SLAM论文阅读

论文信息 标题&#xff1a;NICE-SLAM: Neural Implicit Scalable Encoding for SLAM 作者&#xff1a;Zihan Zhu&#xff0c; Songyou Peng&#xff0c;Viktor Larsson — Zhejiang University 来源&#xff1a;CVPR 代码&#xff1a;https://pengsongyou.github.io/nice-slam…...

cmake 配置Visual studio的调试命令

配置代码如截图&#xff1a; set_property(TARGET ${TARGET_NAME} PROPERTY VS_DEBUGGER_COMMAND "./consoleTest.exe") set_property(TARGET ${TARGET_NAME} PROPERTY VS_DEBUGGER_COMMAND_ARGUMENTS "./config/labelDriver.cfg") set_propert…...

MPDIoU: A Loss for Efficient and Accurate Bounding BoxRegression--论文学习笔记

超越GIoU/DIoU/CIoU/EIoU MPDIoU让YOLOv7和YOLACT双双涨点 目标检测上的指标对比&#xff1a; 论文地址&#xff1a; [2307.07662] MPDIoU: A Loss for Efficient and Accurate Bounding Box Regression (arxiv.org) 摘要 边界框回归&#xff08;Bounding Box Regression&am…...

【Uniapp 的APP热更新】

Uniapp 的APP热更新功能依赖于其打包工具 HBuilder&#xff0c;具体步骤如下&#xff1a; 1. 在 HBuilder 中构建并打包出应用程序 具体步骤&#xff1a; 1.点击发行&#xff0c;点击制作wgt包 2.根据需求修改文件储存路径和其他配置&#xff0c;点击确定 3.等待打包完成&a…...

MySQL主从复制配置

Mysql的主从复制至少是需要两个Mysql的服务,当然Mysql的服务是可以分布在不同的服务器上,也可以在一台服务器上启动多个服务。 (1)首先确保主从服务器上的Mysql版本相同 (2)在主服务器上,创建一个充许从数据库来访问的用户slave,密码为:123456 ,然后使用REPLICATION SLAV…...

Linux - 添加普通用户为信任用户

1.添加用户 在Linux系统中&#xff0c;可以使用以下步骤添加用户&#xff1a; 打开终端并以root用户身份登录 输入以下命令以创建新用户&#xff08;请将username替换为您想要创建的用户名&#xff09;&#xff1a; adduser username 设置该用户的密码&#xff0c;使用以下命…...

flask----路由系统

# 1 flask路由系统是基于装饰器的&#xff1a;参数如下 # 2 转换器&#xff1a; # 3 路由系统本质 # 4 endpoint 不传会怎么样,不传会以视图函数的名字作为值&#xff0c;但是如果加了装饰器&#xff0c;所有视图函数名字都是inner&#xff0c;就会出错&#xff0c;使用wrapp…...

驶向专业:嵌入式开发在自动驾驶中的学习之道

导语: 自动驾驶技术在汽车行业中的快速发展为嵌入式开发领域带来了巨大的机遇。作为自动驾驶的核心组成部分&#xff0c;嵌入式开发在驱动汽车的智能化和自主性方面发挥着至关重要的作用。本文将探讨嵌入式开发的学习方向、途径以及未来在自动驾驶领域中的展望。 一、学习方向:…...

Go语言入门:从零开始的快速指南(一)

文章目录 引言Go语言的诞生背景Go 语言的特性安装Go语言环境集成开发环境安装第一个Go程序Go 源代码的特征解读 引言 Go语言&#xff08;也称为Golang&#xff09;是一种开源的、静态类型的编程语言&#xff0c;由Google开发。它的设计目标是简单、高效、安全、并且易于学习和…...

Windows7+内网, 安装高版本nodejs,使用vite+vue3+typescript开发项目

前言&#xff1a;vite只支持高版本的nodejs&#xff0c;而高版本的nodejs只支持windows8及以上&#xff0c;且vite还对浏览器版本有兼容问题。以下均为vite官网截图 1、安装好低版本的nodejs win7系统建议安装13.及以下&#xff0c;我的是12.12.0这个版本。nodejs低版本官网下载…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统

Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...