2023美国大学生数学建模竞赛C题思路解析(含代码+数据可视化)
以下为2023美国大学生数学建模竞赛C题思路解析(含代码+数据可视化)
规则:
猜词,字母猜对,位置不对为黄色,位置对为绿色,两者皆不对为灰色。
困难模式下的要求:对于猜对的字母(绿色和灰色),下一步必须使用
要求:
报告结果的数量每天都在变化。开发一个模型来解释这种变化,并使用您的模型为2023年3月1日报告的结果数量创建一个预测区间。单词的任何属性是否会影响在硬模式下播放的报告分数百分比?如果是,怎么办?如果没有,为什么不呢?
对于给定的未来解决方案单词,在未来的日期,开发一个模型,使您能够预测报告结果的分布。换句话说,预测未来日期(1,2,3,4,5,6,X)的相关百分比。你的模型和预测有哪些不确定性?举一个具体的例子,说明你对2023年3月1日EERIE一词的预测。你对模型的预测有多自信?
开发并总结一个模型,根据难度对解决方案单词进行分类。识别与每个分类相关的给定单词的属性。使用你的模型,EERIE这个词有多难?讨论分类模型的准确性。
列出并描述此数据集的一些其他有趣的功能。
最后,在给《纽约时报》拼图编辑的一到两页信中总结你的结果。
结果每天都在变化的原因:
是否工作日,人们尝试的意愿有多大
新增一列为是否为工作日,或者判断为周几
昨天或者前几天的难度对于游玩心态的影响
虽然尝试次数这里使用的是百分比,但是总分数与困难模式下的分数为具体的值,尝试的人的数量不同则总分不同。
单词的难度,包括长度,重复字母的数量,词性等 长度是固定的不需要考虑
存在的问题:对于同一个字母的多次使用,他是怎么进行显示的,比如我输入了全是A的情况,他显示的是除了对的位置是绿色,其他全是黄色还是其他的什么情况?
单词是否为常见词,或者和常见词的相似度
在此基础上就需要常见词库,以及单词相似度度量
需要预测的东西: 不同尝试次数的百分比分布,分数区间,困难的分数
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetimeplt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题df = pd.read_excel('Problem_C_Data_Wordle.xlsx', header=1)
df=df[df.columns[1:]]
df.head()

预处理:
百分比之和可能不等于1,所以对其进行归一化
按照'Contest Number'对整个表进行升序排列
判断当前日期是否为周末,为周几
统计单词中字母个数,重复出现的字母算一次
对单词进行词性标注
df = pd.read_excel('Problem_C_Data_Wordle.xlsx', header=1)
df=df[df.columns[1:]]
# 对尝试次数进行归一化,使其结果和等于100
df = df.sort_values(by='Contest number', ignore_index=True)
percent = df[df.columns[5:]].sum(axis=1)
for column in df.columns[5:]:df[column]=df[column]/percent*100
# 判断当前日期为周几,周一为0,依次增加
df['week']=df['Date'].apply(lambda x:x.weekday())
df['is_weekend'] = df['week'].apply(lambda x:x>4)
# 统计单词中字母的个数
df['word_len'] = df['Word'].apply(lambda x:len(set(x)))
# 对单词进行词性标注
df['tag'] = df['Word'].apply(lambda x:nltk.pos_tag(nltk.word_tokenize(x))[0][1])
df.head()

1 第一题
第一小问:
Q:报告结果的数量每天都在变化。开发一个模型来解释这种变化,并使用您的模型为2023年3月1日报告的结果数量创建一个预测区间。
首先判断是否与周几有关,如果有则将该参数加入模型中,如果没有则不加入
使用时间预测模型,或者二次函数训练,使用留一法等交叉验证方法得到关于模型准确率的描述。
第二小问:
Q:单词的任何属性是否会影响在硬模式下播放的报告分数百分比?如果是,怎么办?如果没有,为什么不呢?
A: 任何属性可以包括:唯一字母的数量,单词的词性,常见度,字母的词频
差异度分析,相关性分析
分析整体的星期几对得分均值的影响
plt.scatter(df['Contest number'], df['Number of reported results'])
plt.title('得分数-编号分布图')
plt.show()

weeks = []
for week in range(7):df1 = df[df['week']==week]weeks.append(df1['Number of reported results'].mean())
plt.scatter([i+1 for i in range(7)], weeks)
plt.plot([i+1 for i in range(7)], [df['Number of reported results'].mean() for i in range(7)])
plt.title('周一到周日每天得分均值与总均值图')
# 其中直线为总均值图,散点图为每天的
plt.show()

# 整体得分与星期几之间的相关性
np.corrcoef(df['week'], df['Number of reported results'])

可以看到,在整个时间段中,星期几与得分情况的相关性不大,甚至可以说不相关。
取得分总体趋于稳定后的区域,判断星期几对得分的影响
以上仅为第一问小部分思路(后续完善),剩余部分思路和其他全网具体配套代码、参考论文,以及其他题目思路,可以点击文末群名片获取
相关文章:

2023美国大学生数学建模竞赛C题思路解析(含代码+数据可视化)
以下为2023美国大学生数学建模竞赛C题思路解析(含代码数据可视化)规则:猜词,字母猜对,位置不对为黄色,位置对为绿色,两者皆不对为灰色。困难模式下的要求:对于猜对的字母(…...

aws codebuild 自定义构建环境和本地构建
参考资料 Extending AWS CodeBuild with Custom Build Environments Docker in custom image sample for CodeBuild codebuild自定义构建环境 在创建codebuild项目的时候发现 构建环境是 Docker 映像,其中包含构建和测试项目所需的所有内容的完整文件系统 用ru…...

3年功能3年自动化,从8k到23k的学习过程
简单的先说一下,坐标杭州,14届本科毕业,算上年前在阿里巴巴的面试,一共有面试了有6家公司(因为不想请假,因此只是每个晚上去其他公司面试,所以面试的公司比较少)其中成功的有4家&…...

leaflet: 数据聚合,显示当前bounds区域中的点的名称列表(078)
第078个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+leaflet中实现数据聚合的功能 ,左边列出右边可视区域内的marker的名称。这里主要用到了可视区域的范围以及contains函数。 直接复制下面的 vue+leaflet源代码,操作2分钟即可运行实现效果 文章目录 示例效果配置方…...

XXL-JOB分布式任务调度框架(一)-基础入门
文章目录1.什么是任务调度2.常见定时任务方案2.1. 传统定时任务方案示例2.2. 缺点分析3.什么是分布式任务调度?3.1. 并行任务调度3.2. 高可用3.3. 弹性扩容3.4. 任务管理与监测4.市面上常见的分布式任务调度产品5.初识xxl-job6.xxl-job架构设计6.1.设计思想6.2.架构…...
基于CentOS 7 搭建Redis 7集群
我们的目标是使用2台(多台服务器类似)服务器搭建一个3主3从的redis集群。 我们为什么要使用redis 7呢?因为6、7的版本都做了大量优化,比如6引入了多线程(一些JAVA八股文面试还喜欢问redis为什么是单线程)&…...

Lesson5.3---Python 之 NumPy 统计函数、数据类型和文件操作
一、统计函数 NumPy 能方便地求出统计学常见的描述性统计量。最开始呢,我们还是先导入 numpy。 import numpy as np1. 求平均值 mean() mean() 是默认求出数组内所有元素的平均值。我们使用 np.arange(20).reshape((4,5)) 生成一个初始值默认为 0,终止…...

Puppeteer 爬虫学习
puppeteer简介: Puppeteer 是一个 Node 库,它提供了一个高级 API 来通过 DevTools 协议 控制 Chromium 或 Chrome。Puppeteer 默认以 headless 模式运行, 但是可以通过修改配置文件运行“有头”模式。能作什么?: 生成…...

如何在Power Virtual Agents中实现身份验证
今天我们介绍一下如何通过身份验证的方式来使用Power Virtual Agents。首先进入“Microsoft 365-管理-Azure Active Directory管理中心”。 进入“Azure Active Directory管理中心”后选择“Azure Active Directory”中的“应用注册”-“新注册”。 输入新创建的应用程序名称后…...

金三银四必备软件测试必问面试题
初级软件测试必问面试题1、你的测试职业发展是什么?测试经验越多,测试能力越高。所以我的职业发展是需要时间积累的,一步步向着高级测试工程师奔去。而且我也有初步的职业规划,前 3 年积累测试经验,按如何做好测试工程…...

Java反序列化漏洞——CommonsCollections6链分析
一、前因因为在jdk8u71之后的版本中,sun.reflect.annotation.AnnotationInvocationHandler#readObject的逻辑发生了变化,导致CC1中的两个链条都不能使用,所有我们需要找一个在高版本中也可用的链条。/* Gadget chain: java.io.ObjectInputStr…...

Selenium浏览器自动化测试框架
Selenium浏览器自动化测试框架 目录:导读 1、selenium简介 介绍 功能 优势 2、基本使用 3、获取单节点 4、获取多节点 5、节点交互 6、动作链 7、执行JavaScript代码 8、获取节点信息 9、切换frame 10、延时等待 11、前进和后退 12、cookies 13、选…...

Hashmap链表长度大于8真的会变成红黑树吗?
1、本人博客《HashMap、HashSet底层原理分析》 2、本人博客《若debug时显示的Hashmap没有table、size等元素时,查看第19条》 结论 1、链表长度大于8时(插入第9条时),会触发树化(treeifyBin)方法,但是不一定会树化,若数组大小小于…...
关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地
除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。控制系统中,大致有以下几种地线: (1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。 (2&am…...

排序
一、数据流中的中位数题目描述:如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。…...

Android DataStore Proto存储接入流程详解与使用
一、介绍 通过前面的文字,我们已掌握了DataStore 的存储,但是留下一个尾巴,那就是Proto的接入。 Proto是什么? Protobuf,类似于json和xml,是一种序列化结构数据机制,可以用于数据通讯等场景&a…...

HiEV洞察 | 卖一台亏半台,激光雷达第一股禾赛隐忧仍在
作者 | 感知君Alex 编辑 | 王博2月9日晚,禾赛在万众瞩目下登陆纳斯达克,发行价19美元每股,首日涨超11%,市值超过Luminar,登顶全球市值最高的激光雷达公司。 随后两个交易日,其股价均有不同程度的涨幅&#…...

面试题61. 扑克牌中的顺子
题目 从若干副扑克牌中随机抽 5 张牌,判断是不是一个顺子,即这5张牌是不是连续的。2~10为数字本身,A为1,J为11,Q为12,K为13,而大、小王为 0 ,可以看成任意数字。A 不能视…...

有特别有创意的网站设计案例
有人说 UI 设计师集艺术性与科学性于一身,不仅需要对工具的使用熟练,更需要对美术艺术有一定的基础了解。如果想要成为优秀的 UI 设计师是一个需要磨砺的过程,需要不断的学习和积累,多看多练多感受,其中对于优质的设计…...
Python基础-数据类型之列表
一、列表的定义 name ["小明", "小红", "笑笑"] 二、列表的使用 除了序列中的操作,列表还有一些其他的操作。 (1)不使用列表方法对列表进行修改 1:通过索引修改列表中的值 name ["Kit…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...

基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...

Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...