当前位置: 首页 > news >正文

使用WiFi测量仪进行机器人定位的粒子过滤器研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

使用WiFi测量仪进行机器人定位的粒子滤波器研究旨在利用WiFi信号测量数据实现机器人的定位。

1. 研究背景:在室内环境中,GPS信号通常不可靠或者无法接收到。为了在这种情况下进行机器人定位,可以利用WiFi信号进行测量。WiFi信号的强度和到达时间等信息可以用于确定机器人相对于WiFi AP(接入点)的位置。

2. 系统建模:首先,需要建立机器人的状态空间模型和观测模型。状态空间模型描述机器人的动力学特性和运动行为,而观测模型将WiFi测量数据与机器人的位置进行关联。

3. 粒子表示:为了估计机器人的位置,使用一组粒子来表示机器人的可能位置。每个粒子代表机器人的一个假设位置,这些粒子由状态空间模型进行迭代演化。

4. 粒子滤波更新:根据收集到的WiFi测量数据,需要对粒子进行状态更新。这是通过计算每个粒子的观测概率来实现的,观测概率反映了粒子位置与测量数据之间的匹配程度。

5. 粒子滤波重采样:随着时间推移和系统演化,粒子权重会发生变化。为了保持重要粒子的多样性并去除不重要的粒子,需要进行重采样操作。重采样后的粒子分布更加准确地反映机器人的实际位置。

6. 位置估计:根据粒子的权重,可以计算机器人的位置估计值。一种常见的方法是使用具有较高权重的粒子通过加权平均值来估计机器人的位置。

该研究涉及机器人定位中的粒子滤波器和WiFi测量仪的结合。具体的研究内容可能涉及WiFi信号模型、粒子滤波算法优化和实时定位等方面。研究的目标是利用WiFi测量数据提供高精度和实时的机器人室内定位解决方案。

需要注意的是,WiFi信号的可用性和稳定性会受到室内环境的影响,如信号干扰、衰减和多径效应。因此,在研究中需要考虑这些因素,并尝试通过滤波和校准等方法来提高定位精度和稳定性

本文通过使用WiFi信号校正Odometric测量值,使用粒子过滤器跟踪机器人。演示如何通过粒子过滤器对机器人进行定位。WiFi测量由光线追踪引擎建模,允许多达3面墙的反射。粒子过滤器有助于校正非全息机器人轨迹的测程法。

📚2 运行结果

 

 部分代码:

%% Demo illustring WiFi propagation loss in indoor building

clear,close all
nb_pts                   = 100;
nr                       = 2;

option.TX                = 0;
option.RX                = 0;
option.path              = 0;

flp                      = load_flp('norwich01.flp');

temp                     = flp.geom.planes([1 , 4 , 7] , :);
xmin                     = min(temp(:));
xmax                     = max(temp(:));
temp                     = flp.geom.planes([2 , 5 , 8] , :);
ymin                     = min(temp(:));
ymax                     = max(temp(:));
temp                     = flp.geom.planes([3 , 6 , 9] , :);
zmin                     = min(temp(:));
zmax                     = max(temp(:));


vectx                    = (xmin:(xmax-xmin)/(nb_pts-1):xmax);
vecty                    = (ymin:(ymax-ymin)/(nb_pts-1):ymax);


[X , Y]                  = meshgrid(vectx , vecty);
Z                        = ((zmax-zmin)/2)*ones(nb_pts , nb_pts);
RX                       = [X(:) , Y(:) , Z(:)]';

figure(1)

plot_flp(flp , option);
title('select/add beacon'' positions by left click (right click for the last one)', 'fontsize' , 12)

hold on
[x , y]                 = getpts;
temp                    = (zmax-zmin)/2;
flp.info.TXpoint        = [x' ; y' ; temp(: , ones(1 , length(x)))];

% flp.info.TXpoint         = [6000 ; 6000 ; 500];


plot(flp.info.TXpoint(1 , :) , flp.info.TXpoint(2 , :) , 'c*');
drawnow
hold off


rs_amp                  = total_power3(flp.info.TXpoint , RX , flp.geom.planes , flp.geom.material , flp.info.fc , nr);


figure(2)
imagesc(vectx , vecty , 20*log10(reshape(sum(rs_amp , 1) , nb_pts, nb_pts)));
hold on
plot_flp(flp);
title(sprintf('top view (x - y), nr = %d',nr))
%title('three dimensional view')
xlabel('x in pixels')
ylabel('y in pixels')
zlabel('z in pixles')
axis xy
% view(0,90);
% axis equal
colorbar

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]黄猛,杜红彬.移动机器车的WiFi接口设计[J].自动化仪表,2010,31(03):50-52+56.DOI:10.16086/j.cnki.issn1000-0380.2010.03.007.

[2] 杨博宇, 张煜翔, 王浩然等. (2018). 基于WiFi测量的移动机器人定位研究. 自动化仪表, 39(11), 110-117.

🌈4 Matlab代码实现

相关文章:

使用WiFi测量仪进行机器人定位的粒子过滤器研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

【vue】vue 里面使用 v-html 插入的文本带有换行符‘\n‘不换行

最近开发vue2 项目 &#xff0c;接口返回的是类似于这样的数据&#xff1a;我是第一行的哦\n我是第二行的哦 我是直接这样渲染的&#xff0c; //html <p v-htmltext></p>//渲染值 this.text "我是第一行的哦\n我是第二行的哦"但结果却是不如意&#x…...

Java失效算法与应用(FIFO、LRU、LFU)

文章目录 一、什么是失效算法二、先来先淘汰&#xff08;FIFO&#xff09;1、FIFO概述2、Java实现FIFO3、FIFO特点 三、最久未用淘汰&#xff08;LRU&#xff09;1、LRU概述2、Java实现LRU 四、最近最少使用&#xff08;LFU&#xff09;1、LFU概述2、Java实现LFU 五、应用案例 …...

Go语音介绍

Go语言介绍 Go 即Golang&#xff0c;是Google公司2009年11月正式对外公开的一门编程语言。 Go是静态强类型语言&#xff0c;是区别于解析型语言的编译型语言。 解析型语言——源代码是先翻译为中间代码&#xff0c;然后由解析器对代码进行解释执行。 编译型语言——源代码编…...

Vue2与Vue3响应式原理

Vue2的响应式 Vue3的响应式...

flask中写一个基础的sqlHelper类

写一个SQLHelper类&#xff1a; from flask_sqlalchemy import SQLAlchemydb SQLAlchemy()class SQLHelper:staticmethoddef add(record):db.session.add(record)return SQLHelper.session_commit()staticmethoddef add_all(records):db.session.add_all(records)return SQLH…...

opencv的Mask操作,选择图片中感兴趣的区域

最近做目标检测任务的时候&#xff0c;需要对固定区域的内容进行检测&#xff0c;要用到opencv的mask操作&#xff0c;选择图片固定的区域 代码 import cv2 import numpy as npimg cv2.imread(data/images/smoking.png)# 弹出一个框 让你选择ROI | x,y是左上角的坐标 x,y,w,…...

一次有趣的Webshell分析经历

一次有趣的Webshell分析经历 1.拉取源代码2.解密后门代码3.分析webshell逻辑4.分析404的原因5.附&#xff1a;格式化后的php代码 1.拉取源代码 在对某目标做敏感目录收集时发现对方网站备份源代码在根目录下的 backup.tar.gz&#xff0c;遂下载&#xff0c;先使用D盾分析有没有…...

【NLP概念源和流】 05-引进LSTM网络(第 5/20 部分)

一、说明 在上一篇博客中,我们讨论了原版RNN架构,也讨论了它的局限性。梯度消失是一个非常重要的缺点,它限制了RNN对较短序列的建模。香草 RNN 在相关输入事件和目标信号之间存在超过 5-10 个离散时间步长的时间滞时无法学习。这基本上限制了香草RNN在许多实际问题上的应用,…...

Vue没有node_modules怎么办

npm install 一下 然后再npm run serve 就可以运行了...

企业级高负载web服务器-Tomcat小项目

目录 web静态动态页面区别安装java环境安装Tomcat安装Tomcat包到目录查看Tomcat主目录结构查看Tomcat配置目录结构Tomcat管理Tomcat web管理功能 部署jpress应用 web静态动态页面区别 静态页面&#xff1a; 在网站设计中&#xff0c;纯粹HTML格式的网页&#xff08;可以包含图…...

《golang设计模式》第一部分·创建型模式-03-建造者模式(Builder)

文章目录 1. 概念1.1 角色1.2 类图 2. 代码示例2.1 设计2.2 代码2.3 类图 1. 概念 1.1 角色 Builder&#xff08;抽象建造者&#xff09;&#xff1a;给出一个抽象接口&#xff0c;以规范产品对象的各个组成成分的建造。ConcreteBuilder&#xff08;具体建造者&#xff09;&a…...

git 忽略掉不需要的文件

第一步&#xff1a;创建.gitignore文件 touch .gitignore 第二步&#xff1a;使用vi编辑器 输入不需要的文件&#xff0c;或用通配符*来忽视一系列文件 效果&#xff1a;...

摄像机sd卡格式化怎么恢复数据?简单五步轻松解决

在使用摄像机时&#xff0c;有时不慎将SD卡格式化&#xff0c;导致重要的照片或视频文件丢失。然而&#xff0c;不必惊慌&#xff0c;本文将详细解释如何恢复被格式化的摄像机SD卡上的数据&#xff0c;可通过下面提供的五步&#xff0c;轻松解决数据丢失问题&#xff0c;以确保…...

1-4 AUTOSAR方法论--开发流程

目录 一、方法论 二、单个ECU开发流程 一、方法论 AUTOSAR 方法论&#xff08;AUTOSAR Methodology&#xff09;中车用控制器软件的开发涉及系统级、ECU 级的开发。 系统级&#xff1a;主要考虑系统功能需求、硬件资源、系统约束&#xff0c;然后建立系统架构&#xff1b; 输…...

Win10查询硬盘序列号

添加wmic命令 winR cmd命令 wmic diskdrive get model, serialnumber...

减少错误和重复工作:PDM系统的智能排错功能

减少错误和重复工作&#xff1a;PDM系统的智能排错功能 在产品开发和制造过程中&#xff0c;错误和重复工作常常是企业面临的挑战。这不仅浪费了宝贵的时间和资源&#xff0c;还可能导致产品质量下降和生产延误。PDM系统&#xff08;Product Data Management&#xff0c;产品数…...

【面试题】作用域面试题

作用域 全局作用域局部作用域&#xff08;函数里&#xff09;也称函数作用域块级作用域 {}包裹的 例如if for 括号&#xff08;&#xff09;也算 变量 全局变量 谁都能用&#xff0c;在函数内也可以局部变量&#xff0c;只能在该函数内用&#xff0c;如果这个函数嵌套了子函…...

08 定时器(下)

08 定时器&#xff08;下&#xff09; 本文内容 定时器处理非活动连接模块&#xff0c;分为定时方法与信号通知流程&#xff1b;定时器及其容器设计、定时任务的处理。 定时器设计&#xff0c;将连接资源与定时事件等封装起来&#xff0c;具体包括连接资源、超时时间和回调函…...

C++设计模式之适配器设计模式

文章目录 C适配器设计模式什么是适配器设计模式该模式有什么优缺点优点缺点 如何使用 C适配器设计模式 什么是适配器设计模式 适配器设计模式是一种行为型设计模式&#xff0c;它允许你将两个不兼容的接口组合在一起&#xff0c;使它们能够协同工作。 该模式有什么优缺点 优…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

【C++】纯虚函数类外可以写实现吗?

1. 答案 先说答案&#xff0c;可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...

LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用

中达瑞和自2005年成立以来&#xff0c;一直在光谱成像领域深度钻研和发展&#xff0c;始终致力于研发高性能、高可靠性的光谱成像相机&#xff0c;为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...