python中数据可视化
1.掷一个D6和一个D10 50000次的结果
die.py
from random import randintclass Die:def __init__(self, num_sides=6):self.num_sides = num_sidesdef roll(self):return randint(1, self.num_sides)
die_visual.py
from die import Die
from plotly.graph_objs import Bar, Layout
from plotly import offline# 创建1个D6和1个D10
die_1 = Die()
die_2 = Die(10)# 掷色子并将结果存储在一个列表中
results = []
for roll_num in range(50000):result = die_1.roll() + die_2.roll()results.append(result)# 分析结果
frequencies = []
max_result = die_1.num_sides + die_2.num_sides
for value in range(2, max_result+1):frequency = results.count(value)frequencies.append(frequency)
# print(frequencies)#对结果可视化
x_values = list(range(2, max_result+1))
data = [Bar(x=x_values, y=frequencies)]x_axis_config = {'title': '结果', 'dtick': 1}
y_axis_config = {'title': '结果的频率'}
my_layout = Layout(title='掷一个D6和一个D10 50000次的结果', xaxis=x_axis_config, yaxis=y_axis_config)
offline.plot({'data': data, 'layout': my_layout}, filename='d6_d10.html')
可视化结果:

2.读取scv文件,绘制数据图,处理数据缺失错误
death_valley_highs_lows.py
import csv
import matplotlib.pyplot as plt
from datetime import datetimefilename = 'D:\python_project\Data_Visualization\source_code\chapter_16\\the_csv_file_format\data\death_valley_2018_simple.csv'
with open(filename) as f:reader = csv.reader(f)header_row = next(reader)# for index, column_header in enumerate(header_row):# print(index, column_header)# 从文件中获取最高温度dates, highs, lows= [], [], []for row in reader:current_date = datetime.strptime(row[2], '%Y-%m-%d')# 处理缺失数据错误try:high = int(row[4])low = int(row[5])except ValueError:print(f"Missing data for {current_date}")else:dates.append(current_date)highs.append(high)lows.append(low)# 根据最高温度绘制图形
plt.style.use('seaborn')
fig, ax = plt.subplots()
ax.plot(dates, highs, c='red', alpha=0.5)
ax.plot(dates, lows, c='blue', alpha=0.5)
ax.fill_between(dates, highs, lows, facecolor='blue', alpha=0.1)# 设置图形的格式
title = "2018年每日最高和最低温度\n 美国加利福尼亚州死亡谷"
ax.set_title(title, fontsize=20)
ax.set_xlabel('', fontsize=16)
fig.autofmt_xdate()
ax.set_ylabel("温度(F)", fontsize=16)
ax.tick_params(axis='both', which='major', labelsize=16)
plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签(中文乱码问题)plt.show()
数据结果图:

3.绘制全球地震散点图:数据json格式
eq_world_map.py
import plotly.express as px
import json
import pandas as pdfilename = "D:\python_project\Data_Visualization\source_code\chapter_16\mapping_global_data_sets\data\eq_data_30_day_m1.json"
with open(filename) as f:all_eq_data = json.load(f)all_eq_dicts = all_eq_data['features']
# print(len(all_eq_dicts))
mags, titles, lons, lats = [], [], [], []
for eq_dict in all_eq_dicts:mag = eq_dict['properties']['mag']title = eq_dict['properties']['title']lon = eq_dict['geometry']['coordinates'][0]lat = eq_dict['geometry']['coordinates'][1]mags.append(mag)titles.append(title)lons.append(lon)lats.append(lat)data = pd.DataFrame(data=zip(lons, lats, titles, mags),columns=['经度', '纬度', '位置', '震级']
)
data.head()fig = px.scatter(data,x='经度',y='纬度',range_x=[-200, 200],range_y=[-90, 90],width=800,height=800,title='全球地震散点图',size='震级',size_max=10,color='震级',hover_name='位置',
)
fig.write_html('global_earthquakes.html')
fig.show()
可视化结果:

4.使用Plotly可视化GitHub的API仓库
python_repos_visual.py
import requests
from plotly.graph_objs import Bar
from plotly import offline# 执行API调用并存储响应
url = "https://api.github.com/search/repositories?q=language:python&sort=stars"
headers = {'Accept': 'application/vnd.github.v3+json'}
r = requests.get(url, headers=headers)
print(f"Status code: {r.status_code}")# 处理响应
response_dict = r.json()
repo_dicts = response_dict['items']
repo_links, stars, labels = [], [], []
for repo_dict in repo_dicts:repo_name = repo_dict['name']repo_url = repo_dict['html_url']repo_link = f"<a href='{repo_url}'>{repo_name}"repo_links.append(repo_link)stars.append(repo_dict['stargazers_count'])owner = repo_dict['owner']['login']description = repo_dict['description']label = f"{owner}<br />{description}"labels.append(label)# 可视化
data = [{'type': 'bar','x': repo_links,'y': stars,'hovertext': labels,# 条形设计'marker': {'color': 'rgb(60, 100, 150)','line': {'width': 1.5, 'color': 'rgb(25, 25, 25)'}},'opacity': 0.6, # 不透明度
}]
my_layout = {'title': 'GitHub上最受欢迎的Python项目','titlefont': {'size': 28},'xaxis': {'title': 'Reposistory','titlefont': {'size': 24}, # 图标名称字号'tickfont': {'size': 14}, # 刻度标签字号},'yaxis': {'title': 'Stars','titlefont': {'size': 24},'tickfont': {'size': 14},},
}fig = {'data': data, 'layout': my_layout}
offline.plot(fig, filename='python.repos.html')
可交互式图表:

相关文章:
python中数据可视化
1.掷一个D6和一个D10 50000次的结果 die.py from random import randintclass Die:def __init__(self, num_sides6):self.num_sides num_sidesdef roll(self):return randint(1, self.num_sides) die_visual.py from die import Die from plotly.graph_objs import Bar, L…...
DASCTF 2023 0X401七月暑期挑战赛web复现
目录 <1> Web (1) EzFlask(python原型链污染&flask-pin) (2) MyPicDisk(xpath注入&文件名注入) (3) ez_cms(pearcmd文件包含) (4) ez_py(django框架 session处pickle反序列化) <1> Web (1) EzFlask(python原型链污染&flask-pin) 进入题目 得到源…...
go编译文件
1.编译go文件 go build [go文件]2.执行文件编译文件 ./demo [demo为go文件名称]...
Flowable-子流程-调用活动
目录 定义图形标记XML内容界面操作使用示例子流程设计子流程的XML内容主流程设计主流程的XML内容 视频教程 定义 调用活动是在一个流程定义中调用另一个独立的流程定义,通常可以定义一些通用的流程作为 这种调用子流程,供其他多个流程定义复用。这种子流…...
java 并发
目录 什么是线程?什么是进程?为什么要有线程?有什么关系与区别?什么是守护线程?如何创建、启动 Java 线程?线程池参数详细解释Callable接口和Future类偏向锁 / 轻量级锁 / 重量级锁synchronized 和 java.ut…...
【MySQL】DDL和DML
4,DDL:操作数据库 我们先来学习DDL来操作数据库。而操作数据库主要就是对数据库的增删查操作。 4.1 查询 查询所有的数据库 SHOW DATABASES; 运行上面语句效果如下: 上述查询到的是的这些数据库是mysql安装好自带的数据库,我们以后不要操…...
使用python框架FastAPI
中文文档 Python ORM之SQLAlchemy Fastapi大型项目目录规划 SQL数据库操作 依赖项Depends 待看 和APIRouter from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmakerapp FastAPI()SQ…...
Vue实现leafletMap自定义绘制线段 并且删除指定的已绘制的点位
效果:点击表格可实现选中地图点位,删除按钮点击可删除对应点位并且重新绘制线段,点击确定按钮 保存已经绘制的点位信息传给父组件 并且该组件已实现回显 完整的组件代码如下 文件名称为: leafletMakePointYt <!--* Descripti…...
ChatGPT辅助写论文:提升效率与创造力的利器
写作是人类最重要的交流方式之一,也是学术研究中不可或缺的环节。然而,写作并不是一件容易的事情,尤其是对于科研人员来说,他们需要花费大量的时间和精力来撰写高质量的论文,并且面临着各种各样的挑战,如语…...
面试攻略,Java 基础面试 100 问(六)
JAVA 泛型 泛型提供了编译时类型安全检测机制,该机制允许程序员在编译时检测到非法的类型。泛型的本 质是参数化类型,也就是说所操作的数据类型被指定为一个参数。比如我们要写一个排序方法, 能够对整型数组、字符串数组甚至其他任何类型的…...
图解系列 DNS查找过程和DNS缓存
DNS 充当地址簿。它将人类可读的域名 (google.com) 转换为机器可读的 IP 地址 (142.251.46.238)。 开局一张图 来自:https://xiaolishen.medium.com/the-dns-lookup-journey-240e9a5d345c 寻址流程 查询浏览器缓存:当你输入一个域名后,浏览…...
《吐血整理》高级系列教程-吃透Fiddler抓包教程(21)-如何使用Fiddler生成Jmeter脚本-上篇
1.简介 我们知道Jmeter本身可以录制脚本,也可以通过BadBoy,BlazeMeter等工具进行录制,其实Fiddler也可以录制Jmter脚本(而且有些页面,由于安全设置等原因,使用Jmeter直接无法打开录制时,这时就…...
vim中出现复制不对齐-乱码问题
不对齐解决: 使用纯文本模式粘贴:在进入 Vim 编辑器后,先按下 :set paste 进入插入模式,然后再进行粘贴操作。这样可以确保粘贴的文本以纯文本格式插入,而不会触发自动缩进或其他格式化操作 中文乱码问题:…...
华为OD机考真题--单词接龙--带答案
2023华为OD统一考试(AB卷)题库清单-带答案(持续更新)or2023年华为OD真题机考题库大全-带答案(持续更新) 题目描述: 单词接龙的规则是: 用于接龙的单词首字母必须要前一个单词的尾字母…...
排序进行曲-v3.0
文章目录 小程一言归并排序步骤举例总结时间复杂度分析:空间复杂度分析:注意 应用场景总结 实际举例Other 代码实现结果解释 小程一言 这篇文章是在排序进行曲2.0之后的续讲, 这篇文章主要是对归并排序进行细致分析,以及操作。 希…...
编辑列表操作时的一些思考,关于全量和增量操作
假设我有一个这样的页面,需要对用户的信息做编辑操作 角色下面有一些菜单项,通过一张角色-菜单关系表来维护,那么我要在编辑用户后也要对用户角色关系表做修改,是经过两次比较分别计算出需要增加或者删除的角色用户关系࿰…...
【python】Python tkinter库实现重量单位转换器的GUI程序
文章目录 前言学到什么?导入模块和库创建一个GUI窗口定义函数 from_kg()创建标签、输入框、文本框和按钮设置组件的布局运行窗口循环完整代码运行效果结束语 前言 这段代码是一个简单的重量单位转换器的 GUI 程序,使用了 Python 的 tkinter 库来创建图形界面。该程…...
CVPR2023新作:源数据集对迁移学习性能的影响以及相应的解决方案
Title: A Data-Based Perspective on Transfer Learning (迁移学习的基于数据的观点) Affiliation: MIT (麻省理工学院) Authors: Saachi Jain, Hadi Salman, Alaa Khaddaj, Eric Wong, Sung Min Park, Aleksander Mądry Keywords: transfer learning, source dataset, dow…...
《TCP IP 网络编程》第十五章
第 15 章 套接字和标准I/O 15.1 标准 I/O 的优点 标准 I/O 函数的两个优点: 除了使用 read 和 write 函数收发数据外,还能使用标准 I/O 函数收发数据。下面是标准 I/O 函数的两个优点: 标准 I/O 函数具有良好的移植性标准 I/O 函数可以利用…...
新特性解读 | MySQL 8.0 字段信息统计机制
作者通过一个案例详细说明了 MySQL 8.0 字段信息统计机制的相关参数和使用方式。 作者:杨奇龙 网名“北在南方”,资深 DBA,主要负责数据库架构设计和运维平台开发工作,擅长数据库性能调优、故障诊断。 本文来源:原创投…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...
AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...
vue3 daterange正则踩坑
<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...
