PyTorch 中的累积梯度
https://stackoverflow.com/questions/62067400/understanding-accumulated-gradients-in-pytorch
有一个小的计算图,两次前向梯度累积的结果,可以看到梯度是严格相等的。
代码:
import numpy as np
import torchclass ExampleLinear(torch.nn.Module):def __init__(self):super().__init__()# Initialize the weight at 1self.weight = torch.nn.Parameter(torch.Tensor([1]).float(),requires_grad=True)def forward(self, x):return self.weight * xmodel = ExampleLinear()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)def calculate_loss(x: torch.Tensor) -> torch.Tensor:y = 2 * xy_hat = model(x)temp1 = (y - y_hat)temp2 = temp1**2return temp2# With mulitple batches of size 1
batches = [torch.tensor([4.0]), torch.tensor([2.0])]optimizer.zero_grad()
for i, batch in enumerate(batches):# The loss needs to be scaled, because the mean should be taken across the whole# dataset, which requires the loss to be divided by the number of batches.temp2 = calculate_loss(batch)loss = temp2 / len(batches)loss.backward()print(f"Batch size 1 (batch {i}) - grad: {model.weight.grad}")print(f"Batch size 1 (batch {i}) - weight: {model.weight}")print("="*50)# Updating the model only after all batches
optimizer.step()
print(f"Batch size 1 (final) - grad: {model.weight.grad}")
print(f"Batch size 1 (final) - weight: {model.weight}")
运行结果
Batch size 1 (batch 0) - grad: tensor([-16.])
Batch size 1 (batch 0) - weight: Parameter containing:
tensor([1.], requires_grad=True)
==================================================
Batch size 1 (batch 1) - grad: tensor([-20.])
Batch size 1 (batch 1) - weight: Parameter containing:
tensor([1.], requires_grad=True)
==================================================
Batch size 1 (final) - grad: tensor([-20.])
Batch size 1 (final) - weight: Parameter containing:
tensor([1.2000], requires_grad=True)
然而,如果训练一个真实的模型,结果没有这么理想,比如训练一个bert,𝐵=8,𝑁=1:没有梯度累积(累积每一步),
𝐵=2,𝑁=4:梯度累积(每 4 步累积一次)
使用带有梯度累积的 Batch Normalization 通常效果不佳,原因很简单,因为 BatchNorm 统计数据无法累积。更好的解决方案是使用 Group Normalization 而不是 BatchNorm。
https://ai.stackexchange.com/questions/21972/what-is-the-relationship-between-gradient-accumulation-and-batch-size
相关文章:

PyTorch 中的累积梯度
https://stackoverflow.com/questions/62067400/understanding-accumulated-gradients-in-pytorch 有一个小的计算图,两次前向梯度累积的结果,可以看到梯度是严格相等的。 代码: import numpy as np import torchclass ExampleLinear(torch…...

【面试精品】运维工程师需要具备的核心能力有哪些?
运维,在部分没有接触过IT的小伙伴的概念中觉得是一个比较低级的职位,很容易从字面理解为运营、维护. 很多朋友认为,无论IDC机房运维、网络运维、桌面运维、Linux系统运维、数据库运维、云计算运维、等在互联网公司中的工作就是安装系统&…...

微服务实战项目-学成在线-选课学习(支付与学习中心)模块
微服务实战项目-学成在线-选课学习(支付与学习中心)模块 1 模块需求分析 1.1 模块介绍 本模块实现了学生选课、下单支付、学习的整体流程。 网站的课程有免费和收费两种,对于免费课程学生选课后可直接学习,对于收费课程学生需要下单且支付成功方可选…...

postman和jmeter的区别何在?
小伙伴们大家好呀,前段时间笔者做了一个小调查,发现软件测试行业做功能测试和接口测试的人相对比较多。在测试工作中,有高手,自然也会有小白,但有一点我们无法否认,就是每一个高手都是从小白开始的…...

maven安装(windows)
环境 maven:Apache Maven 3.5.2 jdk环境:jdk 1.8.0_192 系统版本:win10 一、安装 apache官网下载需要的版本,然后解压缩,解压路径尽量不要有空格和中文 官网下载地址 https://maven.apache.org/download.cgihttps:…...
自学安全卷不动,是放弃还是继续?
有天我想去搜一下怎么约女孩子看电影比较不油腻的时候,突然看到一个话题“自学网络安全的人都是什么感受”。 因为我的粉丝们大部分都是在自学或者是准备入行的大学生,所以我很认真一个一个去看了下别人的回答。基本都是劝退自学为主,因为自学…...

Django实现音乐网站 ⑶
使用Python Django框架制作一个音乐网站,在系列文章2的基础上继续开发,本篇主要是后台单曲、专辑、首页轮播图表模块开发。 目录 后台单曲、专辑表模块开发 表结构设计 单曲表(singe)结构 专辑表(album)…...

(13) Qt事件系统(two)
目录 事件分发函数 无边框窗口拖动 自定义事件 发送事件的函数 自定义事件 系统定义的事件号 自定义事件号 自定义事件类 发送和处理事件 sendEvent与postEvent的区别 栈区对象 堆区对象 事件传播机制 事件传播的过程 事件传播到父组件 鼠标单击事件与按钮单击信…...
PHP的知识概要
PHP技术基础 1、PHP是Hypertext Preprocessor的缩写,是基于服务器端运行的脚本程序语言,可以实现数据库和网页之间的数据交互。PHP可以单独运行,也可镶嵌在HTML文件 中。它具有开发快速、性能稳定的优点。 2、PHP是嵌入式脚本语言&…...
JSON格式Python,Java,PHP等封装根据商品ID获取快手商品详情数据方法
快手商城是一个网上购物平台,售卖各类商品,包括服装、鞋类、家居用品、美妆产品、电子产品等。要获取拼多多商品详情数据,您可以通过开放平台的接口或者直接访问快手商城的网页来获取商品详情信息。以下是两种常用方法的介绍: 1.…...

【ASP.NET MVC】MYSQL安装配置(4)
一、安装配置 1、下载MYSQL绿色版压缩包(略) 2、解压到目录,比如E:\mysql目录 3、设置环境变量 添加bin目录到path,方便运行Mysql的命令 先打开系统的《环境变量》配置 双击系统变量中的Path 添加Mysql的BIN目录到path: 4、在…...

前端框架学习-Vue(二)
最近在学习Vue框架,Vue中的内容很多。相当于把之前后端的MVC,V层转移到前端来编写和部署。下面是学习Vue时的大纲。 Vue生命周期是Vue应用的生命周期Vue脚手架,即vue-cli,使用node.js 来创建和启动vue项目Vue组件知识,…...

sublime配置less的一些坑(1)
仅在sublime的Install Package安装保存less报错 在sublime的Install Package安装less 打开sublime软件,按住CtrlShiftP组合键,弹出的界面中选择Install Package 选中后enter或者回车。等会弹出一个弹窗,大致意思是说你已经成功安装了package control。如果你在此之前已经安装了…...

解码“平台工程”,VMware 有备而来
随着全球数字化进程加快,企业使用前沿技术加快商业创新,以提高竞争力。其中如何加快开发效率,为客户创造更多价值成为新的关注焦点。 继DevOps后,“平台工程”(Platform Engineering) 一词引发热议。平台工…...
2023年第四届华数杯数学建模A题B题C题D题思路代码分析
文章目录 0 赛题思路1 竞赛信息2 竞赛时间3 组织机构4 建模常见问题类型4.1 分类问题4.2 优化问题4.3 预测问题4.4 评价问题 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor 1 竞赛信息 为了培养学生的创新意识及运用数…...

java版直播商城平台规划及常见的营销模式+电商源码+小程序+三级分销+二次开发 bbc
1. 涉及平台 平台管理、商家端(PC端、手机端)、买家平台(H5/公众号、小程序、APP端(IOS/Android)、微服务平台(业务服务) 2. 核心架构 Spring Cloud、Spring Boot、Mybatis、Redis 3. 前…...

windows物理机 上安装centos ,ubuntu,等多个操作系统的要点
一、摘要 一般情况下,我们的笔记本或工作电脑都默认安装windows 分几个区,当下是win7 win8 win 10 win11 等,突然我们有需求需要安装个centos ,后面我们应当怎么做,要点是什么?一定要根据网上的贴子一步步来…...
FSDirectory 与 RAMDirectory
FSDirectory和RAMDirectory是Lucene搜索引擎中两种不同的Directory实现,用于管理索引数据的存储。Lucene是一个强大的开源搜索引擎库,它用于创建全文搜索功能,而Directory则是用来表示索引数据的存储位置。 FSDirectory: FSDirectory是将索引…...

小程序开发:开发框架与工具的使用指南
引言 本文以微信小程序为例介绍了小程序开发框架与工具的使用,通过本文的阅读,相信大家能够简单了解小程序开发的基本流程和常用工具,从而快速上手小程序开发。 文章目录 引言一、小程序开发框架与工具简介1.1 小程序开发框架1.2 小程序开发工…...

【LeetCode】探索杨辉三角模型
一、题目描述 力扣原题 首先我们要来了解一下题目本身在说些什么,通过下方的动图我们可以更加清楚地看到杨辉三角是怎样一步步生成的。给到的示例中我们通过输入杨辉三角的行数,然后通过计算得到这个杨辉三角的每一行是什么具体的数值 二、模型选择 首先…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...

TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...

智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...