paddlenlp:社交网络中多模态虚假媒体内容核查
初赛之环境配置篇
- 一、背景
- 二、任务
- 三、数据集
- 1、初赛阶段
- 2、评分标准
- 四、环境操作
- 五、写在最后
一、背景
随着新媒体时代信息媒介的多元化发展,各种内容大量活跃在媒体内中,与此同时各类虚假信息也充斥着社交媒体,影响着公众的判断和决策。如何在大量的文本、图像等多模态信息中,通过大数据与人工智能技术,纠正和消除虚假错误信息,对于网络舆情及社会治理有着重大意义。
二、任务
本次赛题要求选手基于官方指定数据集,通过建模同一事实跨模态数据之间的关系 (主要是文本和图像),实现对任一模态信息能够进行虚假和真实性的检测。鼓励参赛选手通过大模型解决问题,进行技术探索。
三、数据集
本次比赛提供从国内外主流社交媒体平台上爬取的含有不同领域声明的数据集。
1、初赛阶段
训练集与验证集: 提供中文训练集5694条以及英文数据4893条,同时公开英文验证集611条与中文验证集711条供选手优化模型。
评测数据: 提供文娱、经济、健康领域的测试数据,这些领域的数据较容易区分。英文与中文数据集的测试集各600条。参赛队伍上传的结果文本的每一行就是对应的分类结果,该数据不公布,用于评测。
2、评分标准
采用在三个不同类别上的macro F1的高低进行评分,兼顾了准确率与召回率,是谣言检测领域主流的自动评价指标。自动指标排名是计算两个测试集上的Macro F1平均值排序得到。专家会参考自动指标排名、技术方案和现场陈述进行最终的排名。
四、环境操作
该模型运行在百度的飞桨平台,本文运行的是基于Ernie版的baseline。
1、点击【运行一下】

2、选择运行的环境,我们选择【V100 32GB】,这里算力卡基本就是依据你图片的入模容量决定。算力卡余额是有限的,所以尽量用【基础版】环境进行代码编写,编写完后再用【V100 32GB】来进行训练。

3、将/home/aistudio/data/data229919/data.zip 文件拷贝(单击右键进行复制)到根目录,在根目录进行解压(单机右键进行解压),会生成一个 queries_dataset_merge 的文件夹

4、后续的操作就是右图中的代码运行了,此操作和notebook基本一致,点运行即可,最后等待大约两个小时四十分钟,就能得到训练模型的结果了。
5、模型预测的文件需要改动一下,将这里的路径改为 best_model/model_best.pdparams

6、最后再把预测结果打包成zip
!zip test.zip result.csv
五、写在最后
本次记录主要还是以学习为主,花了一个周末的时间,调试和跑通流程。探索了一个带大家最快上手的路径,降低大家的入门难度。下次再和大家分享对baseline的一些学习,以及可以做模型调整的地方。
看完觉得有用的话,记得点个赞,不做白嫖党~
相关文章:
paddlenlp:社交网络中多模态虚假媒体内容核查
初赛之环境配置篇 一、背景二、任务三、数据集1、初赛阶段2、评分标准 四、环境操作五、写在最后 一、背景 随着新媒体时代信息媒介的多元化发展,各种内容大量活跃在媒体内中,与此同时各类虚假信息也充斥着社交媒体,影响着公众的判断和决策。…...
Centos系统有哪些特点呢
CentOS 是一个基于 Red Hat Enterprise Linux (RHEL) 的免费的开源操作系统,由 CentOS 项目维护。CentOS 项目是一个社区驱动的项目,旨在为用户提供一个稳定的、可扩展的 Linux 发行版。 CentOS 系统具有以下特点: 稳定性:CentOS 系统非常稳定,即使是在高负载的环境下也是如此…...
一文学会git常用命令和使用指南
文章目录 0. 前言1.分支分类和管理1. 分支分类规范:2. 最佳实践3. 分支命名规范示例:4. 分支管理方法: 2. commit 注释规范1. 提交注释结构:2. 提交注释的准则: 3. git 常用命令1. git pull 核心用法2. git push 命令1…...
[PyTorch][chapter 46][LSTM -1]
前言: 长短期记忆网络(LSTM,Long Short-Term Memory)是一种时间循环神经网络,是为了解决一般的RNN(循环神经网络)存在的长期依赖问题而专门设计出来的。 目录: 背景简介 LSTM C…...
寄存器详解(二)
目录 内存中字的存储 示例: 数据段寄存器DS与[address] 字的传送 数据段简介 CPU提供的栈机制 栈段寄存器SS和栈顶指针寄存器SP PUSH AX指令的完整描述 示例图 POP AX指令的完整描述 示例图 栈顶超界问题 示例一: 示例二: 内存中字…...
Java AIO
在Java中,AIO代表异步I/O(Asynchronous I/O),它是Java NIO的一个扩展,提供了更高级别的异步I/O操作。AIO允许应用程序执行非阻塞I/O操作,而无需使用Selector和手动轮询事件的方式。 与传统的NIO和Java NIO…...
java集合总结
1.常见集合 Collection List:有序可重复集合,可直接根据元素的索引来访问 Vector-StackArrayListLinkedList Queue:队列集合 Deque-LinkedList、ArrayDequePriorityQueue Set:无序不可重复集合,只能根据元素本身来访问…...
list交并补差集合
list交并补差集合 工具类依赖 <dependency><groupId>org.apache.commons</groupId><artifactId>commons-lang3</artifactId><version>3.8.1</version> </dependency><dependency><groupId>commons-collections&…...
【微信小程序】父组件修改子组件数据或调用子组件方法
一、使用场景 页面中用到了自定义组件形成父子组件关系,在父组件某个特定时期想要操作子组件中的数据或方法,比如离开页面的时候清空子组件的数据。 二、方法 父组件可以通过this.selectComponent方法获取子组件实例对象,这样就可以直接访…...
frp通过nginx映射multipart/x-mixed-replace; boundary=frame流媒体出外网访问
要通过Nginx访问multipart/x-mixed-replace流媒体协议,并通过FRP进行映射访问,你可以按照以下步骤进行操作: 配置Nginx以支持multipart/x-mixed-replace流媒体协议。你需要编辑Nginx的配置文件(通常是nginx.conf)&…...
Kubernetes概述
Kubernetes概述 使用kubeadm快速部署一个k8s集群 Kubernetes高可用集群二进制部署(一)主机准备和负载均衡器安装 Kubernetes高可用集群二进制部署(二)ETCD集群部署 Kubernetes高可用集群二进制部署(三)部署…...
Jmeter教程
目录 安装与配置 一:下载jdk——配置jdk环境变量 二:下载JMeter——配置环境变量 安装与配置 一:下载jdk——配置jdk环境变量 1.新建环境变量变量名:JAVA_HOME变量值:(即JDK的安装路径) 2.编辑Path%J…...
用Rust实现23种设计模式之建造者模式
当使用 Rust 实现建造者模式时,我们可以通过结构体和方法链来实现。建造者模式是一种创建型设计模式,它允许你按照特定的顺序构建复杂对象,同时使你能够灵活地构建不同的变体。下面是一个使用 Rust 实现建造者模式的示例, 在示例中…...
聚观早报 | 腾讯字节等企业驰援防汛救灾;新能源车7月销量单出炉
【聚观365】8月4日消息 腾讯字节等企业驰援防汛救灾新能源车7月销量成绩单出炉Model Y等车型低温续航衰减严重华为Mate60系列猜想图曝光支付宝做短视频引来羊毛党 腾讯字节等企业驰援防汛救灾 近日,京津冀地区遭遇极端降雨天气,引发洪涝和地质灾害&…...
Crack:CAD Exchanger SDK 3.20 Web Toolkit 应用
在CAD Exchanger SDK 版本 3.20.0中,我们在 Web Toolkit 中包含了绘图、BIM 和 MCAD 查看器的示例,以展示如何使用每个工具可视化数据。这些查看器具有显示不同类型数据的特定功能,允许用户根据自己的需求单独使用它们。我们将继续增强每个查…...
改造 ChatGPT-Next-Web 项目重新生成 Docker 镜像
改造 ChatGPT-Next-Web 项目重新生成 Docker 镜像 0.背景1. 修改代码2. 生成 Docker 镜像3. 上传 Docker 镜像4. 运行 Docker 镜像 0.背景 需要通过 ChatGPT-Next-Web 使用自己搭建的 OpenAI API 兼容的服务器,需要对 ChatGPT-Next-Web 项目的少量代码进行改造。 …...
git修改commit日志
由于公司对版本提交日志进行检查,如果不符合要求,则push失败。 以下是修改commit日志的方法: 1.进入到提交代码文件所在目录,即git所在目录下 cd app-repository 2.git log git log commit bf29e3e5e799d364fe2975677baf18c9…...
Qt之qml和widget混合编程调用
首先是创建一个widget项目 然后需要添加qml和quick的插件使用 QT quickwidgets qml 接着要在界面上创建一个quickwidget和按钮 创建一个c对象类 QObjectQml #ifndef QOBJECTQML_H #define QOBJECTQML_H#include <QObject> #include <QDebug> class QObjectQml …...
深度学习torch基础知识
torch. detach()拼接函数torch.stack()torch.nn.DataParallel()np.clip()torch.linspace()PyTorch中tensor.repeat()pytorch索引查找 index_select detach() detach是截断反向传播的梯度流 将某个node变成不需要梯度的Varibale。因此当反向传播经过这个node时,梯度…...
【JAVA】正则表达式是啥?
个人主页:【😊个人主页】 系列专栏:【❤️初识JAVA】 文章目录 前言正则表达式正则表达式语法正则表达式的特点捕获组实例 前言 如果我们想要判断给定的字符串是否符合正则表达式的过滤逻辑(称作“匹配”),…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
MySQL 部分重点知识篇
一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键ÿ…...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
mac:大模型系列测试
0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...
