ELK 企业级日志分析系统
目录
ELK 概述
1、ELK 简介
2、为什么要使用 ELK:
3、完整日志系统基本特征
4、ELK 的工作原理:
总结
ELK Elasticsearch 集群部署(在Node1、Node2节点上操作)
1.环境准备
2.部署 Elasticsearch 软件
(1)安装elasticsearch—rpm包
(2)加载系统服务
(3)修改elasticsearch主配置文件
(4)创建数据存放路径并授权
(5)启动elasticsearch是否成功开启
(6)查看节点信息
3.安装 Elasticsearch-head 插件
(1)编译安装 node
(2)安装 phantomjs(前端的框架)
(3)安装 Elasticsearch-head 数据可视化工具
(4)修改 Elasticsearch 主配置文件
(5)启动 elasticsearch-head 服务
(6)通过 Elasticsearch-head 查看 Elasticsearch 信息
(7)插入索引
ELK Logstash 部署(在 Apache 节点上操作)
1.更改主机名
2.安装Apahce服务(httpd)
3.安装Java环境
4.安装logstash
5.测试 Logstash
6.定义 logstash配置文件
ELK 概述
1、ELK 简介
ELK平台是一套完整的日志集中处理解决方案,将 ElasticSearch、Logstash 和 Kiabana 三个开源工具配合使用, 完成更强大的用户对日志的查询、排序、统计需求。
- ElasticSearch:是基于Lucene(一个全文检索引擎的架构)开发的分布式存储检索引擎,用来存储各类日志。
- Elasticsearch 是用 Java 开发的,可通过 RESTful Web 接口,让用户可以通过浏览器与 Elasticsearch 通信。
- Elasticsearch是一个实时的、分布式的可扩展的搜索引擎,允许进行全文、结构化搜索,它通常用于索引和搜索大容量的日志数据,也可用于搜索许多不同类型的文档。
- Kiabana:Kibana 通常与 Elasticsearch 一起部署,Kibana 是 Elasticsearch 的一个功能强大的数据可视化 Dashboard,Kibana 提供图形化的 web 界面来浏览 Elasticsearch 日志数据,可以用来汇总、分析和搜索重要数据。
- Logstash:作为数据收集引擎。它支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作,然后存储到用户指定的位置,一般会发送给 Elasticsearch。
- Logstash 由 Ruby 语言编写,运行在 Java 虚拟机(JVM)上,是一款强大的数据处理工具, 可以实现数据传输、格式处理、格式化输出。Logstash 具有强大的插件功能,常用于日志处理。
相对 input(数据采集) filter(数据过滤) output(数据输出)
#可以添加的其它组件:
- Filebeat:轻量级的开源日志文件数据搜集器。通常在需要采集数据的客户端安装 Filebeat,并指定目录与日志格式,Filebeat 就能快速收集数据,并发送给 logstash 进或是直接发给 Elasticsearch 存储,性能上相比运行于 JVM 上的 logstash 优势明显,是对它的替代。常应用于 EFLK 架构当中,行解析。
#filebeat 结合 logstash 带来好处:
- 通过 Logstash 具有基于磁盘的自适应缓冲系统,该系统将吸收传入的吞吐量,从而减轻 Elasticsearch 持续写入数据的压力
- 从其他数据源(例如数据库,S3对象存储或消息传递队列)中提取
- 将数据发送到多个目的地,例如S3,HDFS(Hadoop分布式文件系统)或写入文件
- 使用条件数据流逻辑组成更复杂的处理管道
- 缓存/消息队列(redis、kafka、RabbitMQ等):可以对高并发日志数据进行流量削峰和缓冲,这样的缓冲可以一定程度的保护数据不丢失,还可以对整个架构进行应用解耦。
- Fluentd:是一个流行的开源数据收集器。由于 logstash 太重量级的缺点,Logstash 性能低、资源消耗比较多等问题,随后就有 Fluentd 的出现。相比较 logstash,Fluentd 更易用、资源消耗更少、性能更高,在数据处理上更高效可靠,受到企业欢迎,成为 logstash 的一种替代方案,常应用于 EFK 架构当中。在 Kubernetes 集群中也常使用 EFK 作为日志数据收集的方案。在 Kubernetes 集群中一般是通过 DaemonSet 来运行 Fluentd,以便它在每个 Kubernetes 工作节点上都可以运行一个 Pod。 它通过获取容器日志文件、过滤和转换日志数据,然后将数据传递到 Elasticsearch 集群,在该集群中对其进行索引和存储。
2、为什么要使用 ELK:
日志主要包括系统日志、应用程序日志和安全日志。系统运维和开发人员可以通过日志了解服务器软硬件信息、检查配置过程中的错误及错误发生的原因。经常分析日志可以了解服务器的负荷,性能安全性,从而及时采取措施纠正错误。
往往单台机器的日志我们使用grep、awk等工具就能基本实现简单分析,但是当日志被分散的储存不同的设备上。如果你管理数十上百台服务器,你还在使用依次登录每台机器的传统方法查阅日志。这样是不是感觉很繁琐和效率低下。当务之急我们使用集中化的日志管理,例如:开源的syslog,将所有服务器上的日志收集汇总。集中化管理日志后,日志的统计和检索又成为一件比较麻烦的事情,一般我们使用 grep、awk和wc等Linux命令能实现检索和统计,但是对于要求更高的查询、排序和统计等要求和庞大的机器数量依然使用这样的方法难免有点力不从心。
一般大型系统是一个分布式部署的架构,不同的服务模块部署在不同的服务器上,问题出现时,大部分情况需要根据问题暴露的关键信息,定位到具体的服务器和服务模块,构建一套集中式日志系统,可以提高定位问题的效率。
3、完整日志系统基本特征
收集:能够采集多种来源的日志数据
传输:能够稳定的把日志数据解析过滤并传输到存储系统
存储:存储日志数据
分析:支持 UI 分析
警告:能够提供错误报告,监控机制
4、ELK 的工作原理:
- 在所有需要收集日志的服务器上部署Logstash;或者先将日志进行集中化管理在日志服务器上,在日志服务器上部署 Logstash。
- Logstash 收集日志,将日志格式化并输出到 Elasticsearch 群集中。
- Elasticsearch 对格式化后的数据进行索引和存储。
- Kibana 从 ES 群集中查询数据生成图表,并进行前端数据的展示。
总结
logstash作为日志搜集器,从数据源采集数据,并对数据进行过滤,格式化处理,然后交由Elasticsearch存储,kibana对日志进行可视化处理。
- input 数据采集
- output 数据输出
- filter 数据过滤
ELK Elasticsearch 集群部署(在Node1、Node2节点上操作)
Node1节点(2C/4G):node1/192.168.193.40 Elasticsearch Kibana
Node2节点(2C/4G):node2/192.168.193.50 Elasticsearch
Apache节点:apache/192.168.193.60 Logstash Apache
systemctl stop firewalld
setenforce 0
1.环境准备
#更改主机名、配置域名解析、查看Java环境
Node1节点:hostnamectl set-hostname node1
Node2节点:hostnamectl set-hostname node2
vim /etc/hosts
192.168.193.40 node1
192.168.193.50 node2
注:版本问题
java -version #如果没有安装,yum -y install java
openjdk version "1.8.0_131"
OpenJDK Runtime Environment (build 1.8.0_131-b12)
OpenJDK 64-Bit Server VM (build 25.131-b12, mixed mode)建议使用jdk
2.部署 Elasticsearch 软件
(1)安装elasticsearch—rpm包
#上传elasticsearch-5.5.0.rpm到/opt目录下
cd /opt
rpm -ivh elasticsearch-5.5.0.rpm
(2)加载系统服务
systemctl daemon-reload
systemctl enable elasticsearch.service
(3)修改elasticsearch主配置文件
cp /etc/elasticsearch/elasticsearch.yml /etc/elasticsearch/elasticsearch.yml.bak
vim /etc/elasticsearch/elasticsearch.yml
--17--取消注释,指定集群名字
cluster.name: my-elk-cluster
--23--取消注释,指定节点名字:Node1节点为node1,Node2节点为node2
node.name: node1
--33--取消注释,指定数据存放路径
path.data: /data/elk_data
--37--取消注释,指定日志存放路径
path.logs: /var/log/elasticsearch/
--43--取消注释,改为在启动的时候不锁定内存
bootstrap.memory_lock: false
--55--取消注释,设置监听地址,0.0.0.0代表所有地址
network.host: 0.0.0.0
--59--取消注释,ES 服务的默认监听端口为9200
http.port: 9200
--68--取消注释,集群发现通过单播实现,指定要发现的节点 node1、node2
discovery.zen.ping.unicast.hosts: ["node1", "node2"]grep -v "^#" /etc/elasticsearch/elasticsearch.yml


(4)创建数据存放路径并授权
mkdir -p /data/elk_data
chown elasticsearch:elasticsearch /data/elk_data/
![]()
(5)启动elasticsearch是否成功开启
systemctl start elasticsearch.service
netstat -antp | grep 9200

(6)查看节点信息
浏览器访问 http://192.168.193.40:9200 、 http://192.168.193.50:9200 查看节点 Node1、Node2 的信息。
浏览器访问 http://192.168.193.40:9200/_cluster/health?pretty 、 http://192.168.193.50:9200/_cluster/health?pretty查看群集的健康情况,可以看到 status 值为 green(绿色), 表示节点健康运行。
浏览器访问 http://192.168.193.40:9200/_cluster/state?pretty 检查群集状态信息。
#使用上述方式查看群集的状态对用户并不友好,可以通过安装 Elasticsearch-head 插件,可以更方便地管理群集。
节点信息


群集健康状态

检查群集状态信息

3.安装 Elasticsearch-head 插件
- Elasticsearch 在 5.0 版本后,Elasticsearch-head 插件需要作为独立服务进行安装,需要使用npm工具(NodeJS的包管理工具)安装。
- 安装 Elasticsearch-head 需要提前安装好依赖软件 node 和 phantomjs。
- node:是一个基于 Chrome V8 引擎的 JavaScript 运行环境。
- phantomjs:是一个基于 webkit 的JavaScriptAPI,可以理解为一个隐形的浏览器,任何基于 webkit 浏览器做的事情,它都可以做到。
(1)编译安装 node
#上传软件包 node-v8.2.1.tar.gz 到/opt
yum install gcc gcc-c++ make -ycd /opt
tar zxvf node-v8.2.1.tar.gzcd node-v8.2.1/
./configure
make && make install
(2)安装 phantomjs(前端的框架)
#上传软件包 phantomjs-2.1.1-linux-x86_64.tar.bz2 到
cd /opt
tar jxvf phantomjs-2.1.1-linux-x86_64.tar.bz2 -C /usr/local/src/
cd /usr/local/src/phantomjs-2.1.1-linux-x86_64/bin
cp phantomjs /usr/local/bin
(3)安装 Elasticsearch-head 数据可视化工具
#上传软件包 elasticsearch-head.tar.gz 到/opt
cd /opt
tar zxvf elasticsearch-head.tar.gz -C /usr/local/src/
cd /usr/local/src/elasticsearch-head/
npm install

(4)修改 Elasticsearch 主配置文件
vim /etc/elasticsearch/elasticsearch.yml
......
--末尾添加以下内容--
http.cors.enabled: true #开启跨域访问支持,默认为 false
http.cors.allow-origin: "*" #指定跨域访问允许的域名地址为所有systemctl restart elasticsearch

(5)启动 elasticsearch-head 服务
#必须在解压后的 elasticsearch-head 目录下启动服务,进程会读取该目录下的 gruntfile.js 文件,否则可能启动失败。
cd /usr/local/src/elasticsearch-head/
npm run start &> elasticsearch-head@0.0.0 start /usr/local/src/elasticsearch-head
> grunt serverRunning "connect:server" (connect) task
Waiting forever...
Started connect web server on http://localhost:9100#elasticsearch-head 监听的端口是 9100
netstat -natp |grep 9100


(6)通过 Elasticsearch-head 查看 Elasticsearch 信息
通过浏览器访问 http://192.168.193.40:9100/ 地址并连接群集。如果看到群集健康值为 green 绿色,代表群集很健康。

(7)插入索引
#通过命令插入一个测试索引,索引为 index-demo,类型为 test。//输出结果如下:curl -X PUT 'localhost:9200/index-demo/test/1?pretty&pretty' -H 'content-Type: application/json' -d '{"user":"zhangsan","mesg":"hello world"}'
{
"_index" : "index-demo",
"_type" : "test",
"_id" : "1",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 2,
"failed" : 0
},
"created" : true
}浏览器访问 http://192.168.193.40:9100/ 查看索引信息,可以看见索引默认被分片5个,并且有一个副本。
点击“数据浏览”,会发现在node1上创建的索引为 index-demo,类型为 test 的相关信息。


ELK Logstash 部署(在 Apache 节点上操作)
Logstash 一般部署在需要监控其日志的服务器。在本案例中,Logstash 部署在 Apache 服务器上,用于收集 Apache 服务器的日志信息并发送到 Elasticsearch。
1.更改主机名
hostnamectl set-hostname apache
2.安装Apahce服务(httpd)
yum -y install httpd
systemctl start httpd
3.安装Java环境
yum -y install java
java -version
4.安装logstash
#上传软件包 logstash-5.5.1.rpm 到/opt目录下
cd /opt
rpm -ivh logstash-5.5.1.rpm
systemctl start logstash.service
systemctl enable logstash.serviceln -s /usr/share/logstash/bin/logstash /usr/local/bin/
5.测试 Logstash
Logstash 命令常用选项:
-f:通过这个选项可以指定 Logstash 的配置文件,根据配置文件配置 Logstash 的输入和输出流。
-e:从命令行中获取,输入、输出后面跟着字符串,该字符串可以被当作 Logstash 的配置(如果是空,则默认使用 stdin 作为输入,stdout 作为输出)。
-t:测试配置文件是否正确,然后退出。
定义输入和输出流:
#输入采用标准输入,输出采用标准输出(类似管道)
logstash -e 'input { stdin{} } output { stdout{} }'
......
www.baidu.com #键入内容(标准输入)
2020-12-22T03:58:47.799Z node1 www.baidu.com #输出结果(标准输出)
www.sina.com.cn #键入内容(标准输入)
2017-12-22T03:59:02.908Z node1 www.sina.com.cn #输出结果(标准输出)//执行 ctrl+c 退出

#使用 rubydebug 输出详细格式显示,codec 为一种编解码器
logstash -e 'input { stdin{} } output { stdout{ codec=>rubydebug } }'
......
www.baidu.com #键入内容(标准输入)
{"@timestamp" => 2020-12-22T02:15:39.136Z, #输出结果(处理后的结果)"@version" => "1","host" => "apache","message" => "www.baidu.com"
}

#使用 Logstash 将信息写入 Elasticsearch 中
logstash -e 'input { stdin{} } output { elasticsearch { hosts=>["192.168.193.40:9200"] } }'输入 输出 对接
......
www.baidu.com #键入内容(标准输入)
www.sina.com.cn #键入内容(标准输入)
www.google.com #键入内容(标准输入)//结果不在标准输出显示,而是发送至 Elasticsearch 中,可浏览器访问 http://192.168.193.40:9100/ 查看索引信息和数据浏览。

6.定义 logstash配置文件
- Logstash 配置文件基本由三部分组成:input、output 以及 filter(可选,根据需要选择使用)。
- input:表示从数据源采集数据,常见的数据源如Kafka、日志文件等
- filter:表示数据处理层,包括对数据进行格式化处理、数据类型转换、数据过滤等,支持正则表达式
- output:表示将Logstash收集的数据经由过滤器处理之后输出到Elasticsearch。
#格式如下:
input {...}
filter {...}
output {...}
#在每个部分中,也可以指定多个访问方式。例如,若要指定两个日志来源文件,则格式如下:
input {file { path =>"/var/log/messages" type =>"syslog"}file { path =>"/var/log/httpd/access.log" type =>"apache"}
}
#修改 Logstash 配置文件,让其收集系统日志/var/log/messages,并将其输出到 elasticsearch 中。
chmod +r /var/log/messages #让 Logstash 可以读取日志vim /etc/logstash/conf.d/system.conf
input {file{path =>"/var/log/messages" #指定要收集的日志的位置type =>"system" #自定义日志类型标识start_position =>"beginning" #表示从开始处收集}
}
output {elasticsearch { #输出到 elasticsearchhosts => ["192.168.193.40:9200"] #指定 elasticsearch 服务器的地址和端口index =>"system-%{+YYYY.MM.dd}" #指定输出到 elasticsearch 的索引格式}
}systemctl restart logstash 浏览器访问 http://192.168.193.40:9100/ 查看索引信息


ELK Kiabana 部署(在 Node1 节点上操作)
1.安装 Kiabana
#上传软件包 kibana-5.5.1-x86_64.rpm 到/opt目录
cd /opt
rpm -ivh kibana-5.5.1-x86_64.rpm
2.设置 Kibana 的主配置文件
vim /etc/kibana/kibana.yml
--2--取消注释,Kiabana 服务的默认监听端口为5601
server.port: 5601
--7--取消注释,设置 Kiabana 的监听地址,0.0.0.0代表所有地址
server.host: "0.0.0.0"
--21--取消注释,设置和 Elasticsearch 建立连接的地址和端口
elasticsearch.url: "http://192.168.193.40:9200"
--30--取消注释,设置在 elasticsearch 中添加.kibana索引
kibana.index: ".kibana"
3.启动 Kibana 服务
systemctl start kibana.service
systemctl enable kibana.servicenetstat -natp | grep 5601

4.验证 Kibana
浏览器访问 http://192.168.193.40:5601
第一次登录需要添加一个 Elasticsearch 索引:
Index name or pattern
//输入:system-* #在索引名中输入之前配置的 Output 前缀“system”单击 “create” 按钮创建,单击 “Discover” 按钮可查看图表信息及日志信息。
数据展示可以分类显示,在“Available Fields”中的“host”,然后单击 “add”按钮,可以看到按照“host”筛选后的结果

5.将 Apache 服务器的日志(访问的、错误的)添加到 Elasticsearch 并通过 Kibana 显示
vim /etc/logstash/conf.d/apache_log.conf
input {file{path => "/etc/httpd/logs/access_log"type => "access"start_position => "beginning"}file{path => "/etc/httpd/logs/error_log"type => "error"start_position => "beginning"}
}
output {if [type] == "access" {elasticsearch {hosts => ["192.168.193.40:9200"]index => "apache_access-%{+YYYY.MM.dd}"}}if [type] == "error" {elasticsearch {hosts => ["192.168.193.40:9200"]index => "apache_error-%{+YYYY.MM.dd}"}}
}cd /etc/logstash/conf.d/
/usr/share/logstash/bin/logstash -f apache_log.conf
浏览器访问 http://192.168.193.40:9100 查看索引是否创建

浏览器访问 http://192.168.193.40:5601 登录 Kibana,单击“Create Index Pattern”按钮添加索引, 在索引名中输入之前配置的 Output 前缀 apache_access-*,并单击“Create”按钮。在用相同的方法添加 apache_error-*索引。
选择“Discover”选项卡,在中间下拉列表中选择刚添加的 apache_access-* 、apache_error-* 索引, 可以查看相应的图表及日志信息。

相关文章:
ELK 企业级日志分析系统
目录 ELK 概述 1、ELK 简介 2、为什么要使用 ELK: 3、完整日志系统基本特征 4、ELK 的工作原理: 总结 ELK Elasticsearch 集群部署(在Node1、Node2节点上操作) 1.环境准备 2.部署 Elasticsearch …...
PyTorch Lightning教程六:优化代码
有时候模型训练很慢,代码写得冗长之后,没法诶个检查到底那块出现了占用了时空间,本节通过利用Lightning的一些方法,检查分析是那块代码出现了问题,从而来进一步指导和优化代码 本节主要基于性能分析方法,通…...
基于linux下的高并发服务器开发(第四章)- 多线程实现并发服务器
>>了解文件描述符 文件描述符分为两类,一类是用于监听的,一类是用于通信的,在服务器端既有监听的,又有通信的。而且在服务器端只有一个用于监听的文件描述符,用于通信的文件描述符是有n个。和多少个客户端建立了…...
YUV 色彩空间中U 和 V 分量的范围
在YUV色彩空间中,U分量和V分量的范围通常是-0.5到0.5。 具体来说,对于标准的YUV色彩空间(例如YUV420),取样是按照4:2:0的比例进行的。这意味着在水平和垂直方向上,U和V分量的取样比Y分量少一半。因此&…...
【云原生】K8S二进制搭建一
目录 一、环境部署1.1操作系统初始化 二、部署etcd集群2.1 准备签发证书环境在 master01 节点上操作在 node01与02 节点上操作 三、部署docker引擎四、部署 Master 组件4.1在 master01 节点上操 五、部署Worker Node组件 一、环境部署 集群IP组件k8s集群master01192.168.243.1…...
自动化应用杂志自动化应用杂志社自动化应用编辑部2023年第11期目录
数据处理与人工智能 大数据视域下无轨设备全生命周期健康管理技术的研究 赖凡; 1-3 三维激光扫描结合无人机倾斜摄影在街区改造测绘中的技术应用 张睿; 4-6 井上变电站巡检机器人的设计与应用 刘芳; 7-9 《自动化应用》投稿邮箱:cnqikantg126.com 基于机…...
Tensorflow2-初识
TensorFlow2是一个深度学习框架,可以理解为一个工具,有谷歌的全力支持,具有易用、灵活、可扩展、性能优越、良好的社区资源等优点。 1、环境的搭建 1.1 Anaconda3的安装 https://www.anaconda.com/ Python全家桶,包括Python环境和…...
idea-常用插件汇总
idea-常用插件汇总 码云插件 这个插件是码云提供的ps-码云是国内的一款类似github的代码托管工具。 Lombok Lombok是一个通用Java类库,能自动插入编辑器并构建工具,简化Java开发。通过添加注解的方式,不需要为类编写getter或setter等方法…...
【Kubernetes】
目录 一、Kubernetes 概述1、K8S 是什么?2、为什么要用 K8S?3、Kubernetes 集群架构与组件 二、核心组件1、Master 组件2、Node 组件3、K8S创建Pod的工作流程?(重点)4、K8S资源对象(重点)5、Kubernetes 核…...
使用逗号方式、JOIN方式和USING方式进行多表连接查询时哪个方式更好
在Oracle中,使用逗号方式、JOIN方式和USING方式进行多表连接查询时,性能上没有明显的差异。这是因为Oracle优化器会自动将这些语法转换为内部执行计划,以获得最佳的查询性能。 逗号方式:逗号方式是最简单的连接语法,它…...
MacOS上用docker运行mongo及mongo-express
MongoDB简介 MongoDB 是一个基于分布式文件存储的数据库。由 C 语言编写。旨在为 WEB 应用提供可扩展的高性能数据存储解决方案。 MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。 前提 要求…...
海康视频插件VideoWebPlugin在vue中的实现
一,将js文件放在public文件下 二,在index中全局引入 三.在视频页面写方法,创建实例,初始化,我写的是1*4屏的 <template><!--视频窗口展示--><div idplayWnd classNameplayWnd refplayWnd styleleft: 0; bottom: 0;height: 902px;width: 60vw></div>&…...
swagger相关问题
swagger相关问题 swagger版本为: <dependency><groupId>com.github.xiaoymin</groupId><artifactId>swagger-bootstrap-ui</artifactId><version>1.9.6</version> </dependency> <dependency><groupId&…...
Scala关键字lazy的见解
Scala中使用关键字lazy来定义惰性变量,实现延迟加载(懒加载)。 惰性变量只能是不可变变量,并且只有在调用惰性变量时,才会去实例化这个变量。 在Java中,要实现延迟加载(懒加载),需要自己手动实现。一般的做法是这样的…...
sql分类 DDL、DML、DCL
DDL (Data Definition Language 数据定义语言) 这些语句定了不同的数据库、表、视图、索引等数据库对象,还可以用来创建、删除、修改数据库和数据表的结构 如: CREATE \ DROP \ ALTER \ RENAME \ TRUNCATE 等 DML(Data Manipulation Langua…...
C++ 性能优化
要系统地提升C项目的性能,可以采取以下步骤: 分析和度量:首先,你需要通过性能分析工具来确定项目中的性能瓶颈。使用工具如gprof、perf等,来识别代码中消耗时间和资源最多的部分。 选择合适的数据结构和算法ÿ…...
435. 无重叠区间
435. 无重叠区间 给定一个区间的集合 intervals ,其中 intervals[i] [starti, endi] 。返回 需要移除区间的最小数量,使剩余区间互不重叠 。 示例 1: 输入: intervals [[1,2],[2,3],[3,4],[1,3]] 输出: 1 解释: 移除 [1,3] 后,剩下的区间…...
winform使用SetParent 嵌入excel,打开的excel跟随dpi 25%*125%缩放了两次,目前微软官方没有好的解决方案,为什么
双重缩放问题在将 Excel 嵌入到 WinForm 中时确实可能会出现,这是因为两个不同的应用程序(WinForm 和 Excel)之间的 DPI 缩放逻辑不一致,导致双重缩放的结果。 在 Windows 操作系统中,DPI 缩放是一种全局的设置&#…...
MySQL 数据库、表的基本操作
目录 数据库 关系数据库SQL 关系数据库常用词汇 常用命令语句 数据库操作 查看数据库 创建数据库 修改数据库编码 删除数据库 数据表操作 查看数据表 创建数据表 表中数据操作 增 删 改 查 数据库 数据库是在数据管理和程序开发过程中,一种非常重要…...
html5播放器视频切换和连续播放的实例
当前播放器实例可以使用changeVid接口切换正在播放的视频。当有多个视频,在上一个视频播放完毕时,自动播放下一个视频时也可采用该处理方式。 const option {vid: 88083abbf5bcf1356e05d39666be527a_8,//autoplay: true,//playsafe: , //PC端播放加密视…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
HTML中各种标签的作用
一、HTML文件主要标签结构及说明 1. <!DOCTYPE html> 作用:声明文档类型,告知浏览器这是 HTML5 文档。 必须:是。 2. <html lang“zh”>. </html> 作用:包裹整个网页内容,lang"z…...
职坐标物联网全栈开发全流程解析
物联网全栈开发涵盖从物理设备到上层应用的完整技术链路,其核心流程可归纳为四大模块:感知层数据采集、网络层协议交互、平台层资源管理及应用层功能实现。每个模块的技术选型与实现方式直接影响系统性能与扩展性,例如传感器选型需平衡精度与…...
在ubuntu等linux系统上申请https证书
使用 Certbot 自动申请 安装 Certbot Certbot 是 Let’s Encrypt 官方推荐的自动化工具,支持多种操作系统和服务器环境。 在 Ubuntu/Debian 上: sudo apt update sudo apt install certbot申请证书 纯手动方式(不自动配置)&…...
