Embedding入门介绍以及为什么Embedding在大语言模型中很重要
Embeddings技术简介及其历史概要
在机器学习和自然语言处理中,embedding是指将高维度的数据(例如文字、图片、音频)映射到低维度空间的过程。embedding向量通常是一个由实数构成的向量,它将输入的数据表示成一个连续的数值空间中的点。
简单来说,embedding就是一个N维的实值向量,它几乎可以用来表示任何事情,如文本、音乐、视频等。在这里,我们也主要是关注文本的embedding。
而embedding重要的原因在于它可以表示单词或者语句的语义。实值向量的embedding可以表示单词的语义,主要是因为这些embedding向量是根据单词在语言上下文中的出现模式进行学习的。例如,如果一个单词在一些上下文中经常与另一个单词一起出现,那么这两个单词的嵌入向量在向量空间中就会有相似的位置。这意味着它们有相似的含义和语义。
embedding技术的发展可以追溯到20世纪50年代和60年代的语言学研究,其中最著名的是Harris在1954年提出的分布式语义理论(distributional semantic theory)。这个理论认为,单词的语义可以通过它们在上下文中的分布来表示,也就是说,单词的含义可以从其周围的词语中推断出来。
在计算机科学领域,最早的embedding技术可以追溯到20世纪80年代和90年代的神经网络研究。在那个时候,人们开始尝试使用神经网络来学习单词的embedding表示。其中最著名的是Bengio在2003年提出的神经语言模型(neural language model),它可以根据单词的上下文来预测下一个单词,并且可以使用这个模型来生成单词的embedding表示。
自从2010年左右以来,随着深度学习技术的发展,embedding技术得到了广泛的应用和研究。在这个时期,出现了一些重要的嵌入算法,例如Word2Vec、GloVe和FastText等。这些算法可以通过训练神经网络或使用矩阵分解等技术来学习单词的嵌入表示。这些算法被广泛用于各种自然语言处理任务中,例如文本分类、机器翻译、情感分析等。
近年来,随着深度学习和自然语言处理技术的快速发展,embedding技术得到了进一步的改进和发展。例如,BERT、ELMo和GPT等大型语言模型可以生成上下文相关的embedding表示,这些embedding可以更好地捕捉单词的语义和上下文信息。
Embedding的主要价值在哪里?
如前所述,embedding向量是包含语义信息的。也就是含义相近的单词,embedding向量在空间中有相似的位置,但是,除此之外,embedding也有其它优点。
例如,实值向量表示的embedding可以进行向量运算。例如,通过对embedding向量执行向量加法和减法操作,可以推断出单词之间的语义关系。例如,对于embedding向量表示的“king”和“man”,执行“queen = king - man + woman”操作可以得到一个向量表示“queen”,这个向量与实际的“queen”向量在向量空间中非常接近。
此外,实值向量embedding还可以在多个自然语言处理任务中进行共享和迁移。例如,在训练一个情感分析模型时,可以使用在句子分类任务中训练的嵌入向量,这些向量已经学习到了单词的语义和上下文信息,从而可以提高模型的准确性和泛化能力。
综上所述,实值向量embedding可以通过从大量的语言数据中学习单词的语义和上下文信息,从而能够表示单词的语义,并且可以进行向量运算和在不同自然语言处理任务中共享和迁移。
Embedding在大模型中的价值
前面说的其实都是Embedding在之前的价值。但是,大语言模型时代,例如ChatGPT这样的模型流行之后,大家发现embedding有了新的价值,即解决大模型的输入限制。
此前,OpenAI官方也发布了一个案例,即如何使用embedding来解决长文本输入问题,我们DataLearner官方博客也介绍了这个教程:OpenAI官方教程:如何使用基于embeddings检索来解决GPT无法处理长文本和最新数据的问题。
像 GPT-3 这样的语言模型有一个限制,即它们可以处理的输入文本量有限。这个限制通常在几千到数万个tokens之间,具体取决于模型架构和可用的硬件资源。
这意味着对于更长的文本,例如整本书或长文章,可能无法一次将所有文本输入到语言模型中。在这种情况下,文本必须被分成较小的块或“片段”,可以由语言模型单独处理。但是,这种分段可能会导致输出的上下文连贯性和整体连贯性问题,从而降低生成文本的质量。
这就是Embedding的重要性所在。通过将单词和短语表示为高维向量,Embedding允许语言模型以紧凑高效的方式编码输入文本的上下文信息。然后,模型可以使用这些上下文信息来生成更连贯和上下文适当的输出文本,即使输入文本被分成多个片段。
此外,可以在大量文本数据上预训练Embedding,然后在小型数据集上进行微调,这有助于提高语言模型在各种自然语言处理应用程序中的准确性和效率。
如何基于Embedding让大模型解决长文本(如PDF)的输入问题?
这里我们给一个案例来说明如何用Embedding来让ChatGPT回答超长文本中的问题。
如前所述,大多数大语言模型都无法处理过长的文本。除非是GPT-4-32K,否则大多数模型如ChatGPT的输入都很有限。假设此时你有一个很长的PDF,那么,你该如何让大模型“读懂”这个PDF呢?
首先,你可以基于这个PDF来创建向量embedding,并在数据库中存储(当前已经有一些很不错的向量数据库了,如Pinecone)。
接下来,假设你想问个问题“这个文档中关于xxx是如何讨论的?”。那么,此时你有2个向量embedding了,一个是你的问题embedding,一个是之前PDF的embedding。此时,你应该基于你的问题embedding,去向量数据库中搜索PDF中与问题embedding最相似的embedding。然后,把你的问题embedding和检索的得到的最相似的embedding一起给ChatGPT,然后让ChatGPT来回答。
当然,你也可以针对问题和检索得到的embedding做一些提示工程,来优化ChatGPT的回答。
如何生成和存储Embedding
其实,生成Embedding的方法有很多。这里列举几个比较经典的方法和库:
-
Word2Vec:是一种基于神经网络的模型,用于将单词映射到向量空间中。Word2Vec包括两种架构:CBOW (Continuous Bag-of-Words) 和 Skip-gram。CBOW 通过上下文预测中心单词,而 Skip-gram 通过中心单词预测上下文单词。这些预测任务训练出来的神经网络权重可以用作单词的嵌入。
-
GloVe:全称为 Global Vectors for Word Representation,是一种基于共现矩阵的模型。该模型使用统计方法来计算单词之间的关联性,然后通过奇异值分解(SVD)来生成嵌入。GloVe 的特点是在计算上比 Word2Vec 更快,并且可以扩展到更大的数据集。
-
FastText:是由 Facebook AI Research 开发的一种模型,它在 Word2Vec 的基础上添加了一个字符级别的 n-gram 特征。这使得 FastText 可以将未知单词的嵌入表示为已知字符级别 n-gram 特征的平均值。FastText 在处理不规则单词和罕见单词时表现出色。
-
OpenAI的Embeddings:这是OpenAI官方发布的Embeddings的API接口。目前有2代产品。目前主要是第二代模型:
text-embedding-ada-002
。它最长的输入是8191个tokens,输出的维度是1536。
这些方法都有各自的优点和适用场景,选择最适合特定应用程序的嵌入生成方法需要根据具体情况进行评估和测试。不过,有人测试过,OpenAI应该是目前最好的。不过,收费哦~但是很便宜,1000个tokens只要0.0004美元,也就是1美元大约可以返回3000页的内容。获取之后直接保存就行。
目前,embedding的保存可以考虑使用向量数据库。例如,
- Pinecone的产品,最近刚以10亿美元的估值融资了1亿美金。Shopify, Brex, Hubspot都是它产品的用户。
- Milvus是一个开源的向量数据库。
- Anthropic VDB,这是Anthropic公司开发的安全性高的向量数据库,能够对向量数据进行改变、删除、替换等操作,同时保证数据库完整性。
总结
embedding在word2vec发布的时候很火。这几年似乎没那么热,但是随着大语言模型的长输入限制越来越明显,embedding技术重新被大家所重视。
相关文章:

Embedding入门介绍以及为什么Embedding在大语言模型中很重要
Embeddings技术简介及其历史概要 在机器学习和自然语言处理中,embedding是指将高维度的数据(例如文字、图片、音频)映射到低维度空间的过程。embedding向量通常是一个由实数构成的向量,它将输入的数据表示成一个连续的数值空间中…...
暑假刷题第20天--8/3
B-序列的与和_2023河南萌新联赛第(四)场:河南大学 (nowcoder.com)(dfs) #include<iostream> #include<string> using namespace std; #define ull unsigned long long int n,k; ull a[21]; ull ans0; int…...
docker容器内的django启动celery任务队列
问题1: celery任务队列一般要使用redis,但是容器内的django要访问本机的redis是十分麻烦的 解决2: 在容器内安装redis,或者单独启动一个redis的容器,我是单独启动一个redis容器 安装redis镜像docker pull redis启动…...

linux文件描述符fd
文件描述符 fd是一个>0 的整数 每打开一个文件,就创建一个文件描述符,通过文件描述符来操作文件 预定义的文件描述符: 0:标准输入,对应于已打开的标准输入设备(键盘) 1:标准输出,对应于已打开的标准输出设备(控制台) 2.标准错误…...
【深度学习】各个开源库总结及实战-总目录
前言 此专栏主要是用MMCV和PaddlePaddle,它们都是优秀的开源库,用于计算机视觉和深度学习任务。MMCV提供了丰富的计算机视觉工具和算法,基于PyTorch框架,适合对PyTorch熟悉的用户。PaddlePaddle是百度开发的深度学习平台,提供易用且高性能的深度学习框架。 此专栏主要包括…...

Unity Shader:闪烁
还是一样的分为UI闪烁和物体闪烁,其中具体可分为:UI闪烁、物体闪烁与半透明闪烁 1,UI闪烁 对于UI 还是一样的,改写UI本身的shader: Shader "UI/YydUIShanShder" {Properties{[PerRendererData] _MainTex(…...
c++开发模式桥接模式
将抽象部分与它的实现部分分离,使它们都可以独立地变化。它是一种对象结构型模式,又称为柄体(Handle and Body)模式或接口(Interface)模式。 #include <iostream> using namespace std;// Abstractionclass Abstraction { public:virtual void Op…...
javaScript 树形结构 递归查询方法。
1. 函数递归定义 程序调用自身的编程技巧称为递归( recursion)。 2.使用条件 1.存在限制条件,当满足这个限制条件的时候,递归便不再继续。 2.每次递归调用之后越来越接近这个限制条件。 3.既然是自己调用自己,那么整个…...

MySQL语法2
DQL语句介绍 DQL是数据查询语言,用来查询数据库中表的记录 DQL-基本查询语句 SELECT 字段列表 FROM 表名列表 WHERE 条件列表 GROUP BY 分组字段列表 HAVIMG 分组后条件列表 ORDER BY 排列字段列表 LIMIT 分页参数 讲解过程:基本查询、条件查询…...

Mysql on duplicate key update用法及优缺点
在实际应用中,经常碰到导入数据的功能,当导入的数据不存在时则进行添加,有修改时则进行更新, 在刚碰到的时候,一般思路是将其实现分为两块,分别是判断增加,判断更新,后来发现在mysql…...

【Linux】-进程概念之进程优先级(如何去进行调度以及进程切换),还不进来看看??
💖作者:小树苗渴望变成参天大树🎈 🎉作者宣言:认真写好每一篇博客💤 🎊作者gitee:gitee✨ 💞作者专栏:C语言,数据结构初阶,Linux,C 动态规划算法🎄 如 果 你 …...

《在细雨中呼喊》阅读笔记
《在细雨中呼喊》阅读笔记 2023年2月5号在家读完,本书就是以作者者回忆的形式来写,男一号叫孙光林,有一个哥哥孙光平,一个弟弟叫孙光明,父亲叫孙光才。书中写了四篇故事。 第一篇写的就是作者对于老家生活的回忆 小的时…...

01-1 搭建 pytorch 虚拟环境
pytorch 管网:PyTorch 一 进入 Anaconda 二 创建虚拟环境 conda create -n pytorch python3.9注意要注意断 VPN切换镜像: 移除原来的镜像 # 查看当前配置 conda config --show channels conda config --show-sources# 移除之前的镜像 conda config --…...

RocketMQ 事务消息
事务消息是 RocketMQ 的高级特性之一 。这篇文章,笔者会从应用场景、功能原理、实战例子三个模块慢慢为你揭开事务消息的神秘面纱。 1 应用场景 举一个电商场景的例子:用户购物车结算时,系统会创建支付订单。 用户支付成功后支付订单的状态…...
Windows安装ElasticSearch
安装环境:java环境。新版本需要安装高版本的java,所有本次安装的为 7.x版本的ElasticSearch 。所以要java11 1、安装java11 2、下载 Elasticsearch 安装包 官网地址:(https://www.elastic.co/cn/) 安装包下载地址:https://www…...

【深度学习】SMILEtrack: SiMIlarity LEarning for Multiple Object Tracking,论文
论文:https://arxiv.org/abs/2211.08824 代码:https://github.com/WWangYuHsiang/SMILEtrack 文章目录 AbstractIntroductionRelated WorkTracking-by-DetectionDetection methodData association method Tracking-by-Attention Methodology架构概述外观…...

【Kubernetes】Kubernetes之二进制部署
kubernetes 一、Kubernetes 的安装部署1. 常见的安装部署方式1.1 Minikube1.2 Kubeadm1.3 二进制安装部署2. K8S 部署 二进制与高可用的区别2.1 二进制部署2.2 kubeadm 部署二、Kubernetes 二进制部署过程1. 服务器相关设置以及架构2. 操作系统初始化配置3. 部署 etcd 集群4. 部…...

京东开源的、高效的企业级表格可视化搭建解决方案:DripTable
DripTable 是京东零售推出的一款用于企业级中后台的动态列表解决方案,项目基于 React 和 JSON Schema,旨在通过简单配置快速生成页面动态列表来降低列表开发难度、提高工作效率。 DripTable 目前包含以下子项目:drip-table、drip-table-gene…...

STL C++学习背景
STL C学习背景 背景知识 背景知识 STL前置知识 STL,英文全称 standard template library,中文可译为标准模板库或者泛型库,其包含有大量的模板类和模板函数,是 C 提供的一个基础模板的集合,用于完成诸如输入/输出、数…...
C#踩坑:谨慎在XML数据列上绑定鼠标事件!
按照计划,昨天晚上就完成最后的公式自动计算,程序的流程就算完整了,可以正常运行了,一般情况下,是可以完成的。 10点开始干,窗体上放置一个Treeview,然后针对XML对Treeview进行数据绑定…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...

MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...

select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...

Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...