当前位置: 首页 > news >正文

基于Yolov2深度学习网络的车辆检测算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1. 卷积神经网络(CNN)

4.2. YOLOv2 网络

4.3. 实现过程

4.4. 应用领域

5.算法完整程序工程


1.算法运行效果图预览

 

 

2.算法运行软件版本

MATLAB2022A

3.部分核心程序

............................................................................
options = trainingOptions('sgdm', ...'MiniBatchSize', 8, ....'InitialLearnRate',1e-3, ...'MaxEpochs',100,...'CheckpointPath', checkpoint_folder, ...'Shuffle','every-epoch', ...'ExecutionEnvironment', 'gpu');% 设置训练选项
% 训练 YOLOv2 目标检测器
[detector,info] = trainYOLOv2ObjectDetector(train_data,lgraph,options);
for i = 1:num_test_imagesI = imread(test_data.imageFilename{i});% 读取测试图像[bboxes,scores,labels] = detect(detector,I);% 在测试图像上进行目标检测results.Boxes{i} = bboxes;results.Scores{i} = scores;results.Labels{i} = labels;
end
% 期望的测试集标注信息
expected_results = test_data(:, 2:end);
% 计算平均准确率和召回率
[ap, recall, precision] = evaluateDetectionPrecision(results, expected_results);plot(recall,precision)
xlabel('召回率')
ylabel('准确率')
grid on
title(sprintf('平均准确率 = %.2f', ap))
% 保存训练好的目标检测器
save yolov2.mat detector

4.算法理论概述

         车辆检测是计算机视觉领域中的一个重要问题。它在自动驾驶、智能交通系统、交通监控以及车辆计数等应用场景中起着至关重要的作用。近年来,深度学习在图像识别领域取得了显著的成果,其中基于卷积神经网络(CNN)的车辆检测方法成为了研究的热点。


4.1. 卷积神经网络(CNN)


        卷积神经网络是一类深度学习模型,特别适用于处理图像数据。它通过多层卷积层、池化层和全连接层来逐步提取图像特征,并进行分类或回归任务。在车辆检测中,我们使用一个经过预训练的卷积神经网络来提取图像特征,然后在其基础上构建车辆检测模型。

4.2. YOLOv2 网络


        YOLOv2是YOLO(You Only Look Once)目标检测算法的改进版本。它采用了一系列的技术手段来提高检测精度和速度。YOLOv2的核心思想是将目标检测任务看作是一个回归问题,同时在多个尺度上进行检测。YOLOv2网络结构由卷积层、池化层、全连接层以及特殊的检测层(Detection Layer)组成。其中,检测层负责生成边界框和类别概率。

4.3. 实现过程


        车辆检测需要大量的带有车辆标注的图像数据集。通常,我们会采用一些公开的数据集,如KITTI、Cityscapes等。这些数据集包含了大量的道路场景图像,并对图像中的车辆位置进行了标注。

         在车辆检测中,我们可以使用经过预训练的卷积神经网络作为特征提取器。常用的预训练网络包括VGG、ResNet、MobileNet等。我们可以选择合适的预训练网络,并在其基础上进行微调。
         由于车辆检测是一个复杂的任务,为了提高模型的泛化能力,我们需要进行数据增强。数据增强可以通过随机裁剪、随机旋转、随机缩放等操作来扩充训练集。
         在选择好特征提取器后,我们需要在其基础上构建车辆检测模型。YOLOv2采用了多尺度检测策略,即在不同层级的特征图上进行检测。我们需要根据检测目标的大小选择不同的特征图来进行检测。
         完成模型构建后,我们需要使用标注的图像数据进行训练。在训练过程中,我们通过最小化损失函数来优化模型参数,使得模型能够准确地检测车辆。常用的损失函数包括边界框回归损失和分类损失。

4.4. 应用领域


         基于YOLOv2深度学习网络的车辆检测在许多应用领域中具有广泛的应用。在自动驾驶中,车辆检测是一个关键的技术。基于YOLOv2深度学习网络的车辆检测可以帮助自动驾驶车辆实时感知周围的车辆,并做出相应的决策。在智能交通系统中,车辆检测可以用于实时监控道路交通状况,提供实时的交通流量信息,并辅助交通信号控制。基于YOLOv2深度学习网络的车辆检测可以用于交通违法检测,如红灯闯禁、不按规定车道行驶等。在停车场管理、交通流量统计等场景中,车辆计数是一个重要的任务。基于YOLOv2深度学习网络的车辆检测可以用于实时计数车辆。

5.算法完整程序工程

OOOOO

OOO

O

相关文章:

基于Yolov2深度学习网络的车辆检测算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1. 卷积神经网络(CNN) 4.2. YOLOv2 网络 4.3. 实现过程 4.4. 应用领域 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 MATLAB2022A 3.部分核心…...

Java的I/O类库- NIO

Java NIO(New I/O)是Java平台提供的一种用于非阻塞I/O操作的API。它引入了一组新的Java类,用于实现高性能的、非阻塞的I/O操作,以替代传统的阻塞式I/O(IO Blocking)模型。Java NIO的核心是基于Channel&…...

【ASP.NET MVC】使用动软(三)(11)

一、问题 上文中提到,动软提供了数据库的基本操作功能,但是往往需要添加新的功能来解决实际问题,比如GetModel,通过id去查对象: 这个功能就需要进行改进:往往程序中获取的是实体的其他属性,比如…...

基于MATLAB长时间序列遥感数据植被物候提取与分析

MATLAB MATLAB是美国MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。 [1] MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂&a…...

K8S deployment 重启的三种方法

一般重启deployment&#xff0c;常规操作是删掉对应的pod, 但如果有多个副本集的话&#xff0c;一个个删很麻烦。 除了删除pod&#xff0c;还可以&#xff1a; 方案一&#xff1a; 加上环境变量 kubectl patch deploy <deployment-name> -p {"spec":{"…...

解决Linux下PyCharm无法新建文件

一、问题描述 如图&#xff0c;在Ubuntu Linux系统中使用pycharm管理项目时&#xff0c;提示无法新建.py源文件&#xff1a; 二、问题解决 将问题定性为文件夹&#xff08;目录&#xff09;权限问题&#xff0c;在终端中打开项目文件夹的上级目录&#xff0c;将整个项目目录的…...

规则引擎技术解决方案

1 概述 1.1 规则引擎的背景 业务系统在应用过程中&#xff0c;常常包含着要处理“复杂、多变”的部分&#xff0c;这部分往往是“业务规则”或者是“数据的处理逻辑”。因此这部分的动态规则的问题&#xff0c;往往需要可配置&#xff0c;并对系统性能和热部署有一定的要求。从…...

2023奇安信天眼设备--面试题

1.在天眼分析平台网络协议中sip、dip、sport、dport字段表示的含义是什么&#xff1f; sip 源IP、dip 目的IP、sport 源端口、dport 目的端口 2.在天眼分析平台DNS协议中dns type字段表示的含义是? dns type表示DNS请求类型 0代表DNS请求&#xff0c;1代表DNS响应 3.dns_typ…...

【剑指Offer 58】 左旋转字符串,Java解密。

LeetCode 剑指Offer 75道练习题 文章目录 剑指Offer:左旋转字符串示例:限制:解题思路:剑指Offer:左旋转字符串 【题目描述】 字符串的左旋转操作是把字符串前面的若干个字符转移到字符串的尾部。请定义一个函数实现字符串左旋转操作的功能。比如,输入字符串"abcdef…...

Python SMTP发送邮件

Python SMTP发送邮件 SMTP&#xff08;Simple Mail Transfer Protocol&#xff09;即简单邮件传输协议,它是一组用于由源地址到目的地址传送邮件的规则&#xff0c;由它来控制信件的中转方式。 python的smtplib提供了一种很方便的途径发送电子邮件。它对smtp协议进行了简单的…...

Jmeter-获取接口响应头(Response headers)信息进行关联

文章目录 Jmeter-获取接口响应头&#xff08;Response headers&#xff09;信息进行关联使用正则表达式提取器将Set-Cookie的值提取出来在其余接口中关联该提取信息运行查看关联是否成功 Jmeter-获取接口响应头&#xff08;Response headers&#xff09;信息进行关联 获取某一…...

解密爬虫ip是如何被识别屏蔽的

在当今信息化的时代&#xff0c;网络爬虫已经成为许多企业、学术机构和个人不可或缺的工具。然而&#xff0c;随着网站安全防护的升级&#xff0c;爬虫ip往往容易被识别并屏蔽&#xff0c;给爬虫工作增加了许多困扰。在这里&#xff0c;作为一家专业的爬虫ip供应商&#xff0c;…...

GPIO实验

一、GPIO GPIO&#xff08;General-purpose input/output&#xff09;即通用型输入输出&#xff0c;GPIO可以控制连接在其之上的引脚实现信号的输入和输出 芯片的引脚与外部设备相连&#xff0c;从而实现与外部硬件设备的通讯、控制及信号采集等功能 LED实验步骤 最终目的&am…...

Docker-Compose编排与部署(lnmp实例)

第四阶段 时 间&#xff1a;2023年8月3日 参加人&#xff1a;全班人员 内 容&#xff1a; Docker-Compose编排与部署 目录 一、Docker Compose &#xff08;一&#xff09;概述 &#xff08;二&#xff09;Compose适用于所有环境&#xff1a; &#xff08;三&#xf…...

Docker 网络模型使用详解 (1)Dockers网络基础

目录 环境准备 Dockers 网络基础 1.端口映射 查看随机映射端口范围 -p可以指定映射到本地端口 映射指定地址和指定端口 映射指定地址 宿主机端口随机分配 指定传输协议 端口暴露 容器互联 自定义网络 现在把container7加入到demo_net中 在启动一个容器加入到demo_net…...

【Spring】(四)Bean 的作用域和生命周期

文章目录 前言一、Bean 的作用域1.1 被修改的 Bean 案例1.2 作用域的定义1.3 Bean 的六种作用域1.4 Bean 作用域的设置 二、Spring 的执行流程 和 Bean 的生命周期2.1 Spring 的执行流程2.2 Bean 的生命周期2.3 Bean 生命周期的演示 前言 Bean 是 Spring 框架中的一个核心概念…...

卷积神经网络【图解CNN】

文章目录 1.卷积运算2.池化3.全连接层 卷积神经网络可以看作一个函数或者黑箱&#xff0c;输入就是图片的像素阵列&#xff0c;输出就是这个图片是什么&#xff1f; 图片是X&#xff0c;那么就输出‘x’&#xff0c;图片是‘O’,那么就输出O&#xff1b; 在计算机眼中&#xff…...

命令模式 Command Pattern 《游戏设计模式》学习笔记

对于一般的按键输入&#xff0c;我们通常这么做&#xff0c;直接if按了什么键&#xff0c;就执行相应的操作 在这里我们是将用户的输入和程序行为硬编码在一起&#xff0c;这是我们很自然就想到的最快的做法。 但是如果这是一个大型游戏&#xff0c;往往我们需要实现一个按键…...

供水管网漏损监测,24小时保障城市供水安全

供水管网作为城市生命线重要组成部分&#xff0c;其安全运行是城市建设和人民生活的基本保障。随着我国社会经济的快速发展和城市化进程的加快&#xff0c;城市供水管网的建设规模日益增长。然而&#xff0c;由于管网老化、外力破坏和不当维护等因素导致的供水管网漏损&#xf…...

How to Use Glslang

文章目录 Execution of Standalone Wrapper构建 (CMake)依赖关系构建步骤如果需要更改 GLSL 语法测试运行测试基本内部操作 Execution of Standalone Wrapper 要使用独立的二进制形式&#xff0c;请执行glslang&#xff0c;它将打印一条使用语句。基本操作是给它一个包含着色器…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

Selenium常用函数介绍

目录 一&#xff0c;元素定位 1.1 cssSeector 1.2 xpath 二&#xff0c;操作测试对象 三&#xff0c;窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四&#xff0c;弹窗 五&#xff0c;等待 六&#xff0c;导航 七&#xff0c;文件上传 …...