当前位置: 首页 > news >正文

Nodejs环境搭建和配置

Nodejs环境的搭建和配置

1、下载

官网:http://nodejs.cn/download/,选择windows64位 msi文件

2、安装和配置环境

双击安装之后,配置环境变量:

①系统变量那边创建NODE_PATH变量,值为nodejs文件夹的node_modules文件夹路径

D:\Envirenment\nodejs\node_modules //这是我的

②Path变量里面添加两条变量:

D:\Envirenment\nodejs\  //nodejs文件夹路径
和
%NODE_PATH%

环境变量配置好之后,cmd打开终端,查看nodejs和npm的版本,如果跳出版本,说明安装成功

node -v
npm -v 

随后在终端执行下面的命令:

npm config set prefix "D:\Envirenment\nodejs\node_global" //提前创建好文件夹,在nodejs文件夹目录下创建就行
npm config set cache "D:\Envirenment\nodejs\node_cache"

配置好之后,更改镜像源:

npm config set registry https://registry.npm.taobao.org //改成国内的,下载快

查看镜像设置情况:

npm get registry

安装Vue脚手架:

npm install -g@vue/cli

到这里,nodejs的环境就大体搭建完了,还有一些细节配置本人就没有去研究。

参考文章:
Vue开发实例(01)之环境搭建nodejs与运行第一个Vue项目

相关文章:

Nodejs环境搭建和配置

Nodejs环境的搭建和配置 1、下载 官网:http://nodejs.cn/download/,选择windows64位 msi文件 2、安装和配置环境 双击安装之后,配置环境变量: ①系统变量那边创建NODE_PATH变量,值为nodejs文件夹的node_modules文…...

MybatisPlus------条件构造器Wrapper以及QueryWrapper用法(七)

MybatisPlus------条件构造器Wapper(七) Wrapper:条件构造器抽象类,最顶端父类 AbstarctWrapper:用于查询条件封装,生成sql的where条件。 QueryWrapper:查询条件封装(可以用于查询、删除&#x…...

NetSuite Intercompany Framework 101

今朝,谈一谈Intercompany Framework,这是一个彰显NetSuite市场野心的基础功能框架。从20.2开始逐渐浮出水面,虽然经过过往的几个版本,不断推出组成功能,但目前仍然未见其全貌。 作为顾问,你必须关注它&…...

限时活动|凭徽章领披萨大奖,玩转Moonbeam治理论坛

动动手指,无需每天打卡,用刷手机的零碎时间领一份Web3惊喜! 本次挑战的目标是鼓励大家参与社区治理、熟悉论坛操作。有关参与方式和原因的信息在Twitter上共享:有兴趣可以和ThinkWildCrypto一起探索论坛以解锁其功能、了解最近和正…...

Golang中struct{}和struct{}{}的区别你知道吗?

首先说下Golang中的结构体,结构体是由一系列具有相同类型或不同类型的数据构成的数据集合,Golang中使用关键字struct来创建一个结构体,语法如下:typeStudentstruct { Name string }下面定义一个Student结构体,例如&am…...

网络安全-信息收集- 谷歌浏览器插件收集信息,谷歌hacking搜索语法-带你玩不一样的搜索引擎

网络安全-信息收集- 谷歌浏览器插件收集信息,谷歌hacking搜索语法-带你玩不一样的搜索引擎 前言 一,我也是初学者记录的笔记 二,可能有错误的地方,请谨慎 三,欢迎各路大神指教 四,任何文章仅作为学习使用 …...

基础篇—一文掌握css的边框属性

CSS 边框属性 CSS边框属性允许你指定一个元素边框的样式和颜色。 1、边框样式 边框样式属性指定要显示什么样的边界。 border-style属性用来定义边框的样式 2、边框宽度 您可以通过 border-width 属性为边框指定宽度。 为边框指定宽度有两种方法:可以指定长度值,比如 2px…...

05服务发现:引入etcd服务注册中心

在分布式微服务架构中,服务注册发现组件(通常称为服务注册中心)往往有着举足轻重的作用,它的性能与稳定可能会直接影响到整个服务的状态,比如Spring Cloud中的Eureka、Dubbo中的Zookeeper等等,接下来我们就gRPC微服务中最常见的服务注册中心etcd,来讲述下两者在具体是怎…...

Pdfium.Net SDK 4.78.2704 完美Crack/Ptach

不限制时,/不限PDF体积、、、、、// version: 4.78.2704 | file size: 52.7 Mb Pdfium .Net SDK C# PDF 库 从头开始或从一堆扫描图像创建 PDF 编辑、合并、拆分和操作 PDF,提取文本和图像 嵌入独立的 Winforms 或 WPF PDF 查看器 支持:.Net…...

再学C语言38:指针操作

C提供了6种基本的指针操作 示例代码&#xff1a; #include <stdio.h>int main(void) {int arr[5] {1, 2, 3, 4, 5};int * p1, *p2, *p3;p1 arr; // 把一个地址赋给指针p2 &arr[2]; // 把一个地址赋给指针printf("指针指向的地址&#xff0c;指针指向地址中…...

【论文Word排版】使用多级列表设置论文序号

在Word中对论文进行排版 1.设置章节前面的序号 1.1 需求 通常情况下要求如下 一级标题“第一章 XXX”&#xff0c;然后是“1.1 研究意义”&#xff0c; “1.2 研究现状” 之前的处理方式都是手打&#xff0c;并没有借助word的多级列表实现。这次趁着写毕业论文研究了一下。…...

分支管理方案

背景 在工作的过程中&#xff0c;git管理方式已经成为每一个项目开发的基础&#xff0c;每个项目的开发都离不开git管理方式。 但是在使用的过程中&#xff0c;由于对git分支管理方案的了解不深&#xff0c;导致会出现分支管理不明确的情况。 本文主要是做科普作用&#xff…...

Allegro走线时如何自动关闭其它网络飞线显示操作指导

Allegro走线时如何自动关闭其它网络飞线显示操作指导 在做PCB设计的时候,尤其是在评估布线的时候,走某一个网络的时候,希望其它网络的飞线会被自动关闭,方便评估。 Allegro支持这个功能,如下图 走线前 走线后 具体操作如下 点击Route...

Linux中常用命令汇总二

Linux中常用命令汇总一文章地址&#xff1a;https://blog.csdn.net/u011837804/article/details/1289952531、时间日期类基本语法date [OPTION]... [FORMAT]选项说明选项说明-d<时间字符串>显示指定的“时间字符串”表示的时间&#xff0c;而非当前时间-s<日期时间>…...

【数据结构】排序算法

目录 1.理解排序 1.1 排序的概念 1.2 排序的运用场景 1.3 常见的排序算法 2.插入排序算法 2.1 直接插入排序 2.2 希尔排序 3.选择排序算法 3.1 直接选择排序 3.2 堆排序 4.交换排序算法 4.1 冒泡排序 4.2 快速排序 4.2.1 hoare 法 4.2.2 挖坑法 4.2.3 前…...

[MySQL]初识数据库

哈喽&#xff0c;大家好&#xff01;我是保护小周ღ&#xff0c;本期为大家带来的是 MySQL 数据库&#xff0c;也是新的知识&#xff0c;首先我们会初步认识什么是数据库&#xff0c;什么是Mysql 数据库&#xff0c;以及我们 mysql 主要学什么&#xff0c;SQL 语句简单使用&…...

XXL-JOB分布式任务调度框架(二)-路由策略

文章目录1.引言2.任务详解2.1.执行器2.2.基础配置3.路由策略(第一个)-案例4.路由策略(最后一个)-案例5.轮询策略-案例7.分片广播任务1.引言 本篇文章承接上文《XXL-JOB分布式任务调度框架(一)-基础入门》&#xff0c;上一次和大家简单介绍了下 xxl-job 的由来以及使用方法&…...

Java_Maven:5. 把第三方 jar 包放入本地仓库或私服

目录 1 导入本地库 2 导入私服 3 参数说明 1 导入本地库 随便找一个 jar 包测试&#xff0c;可以先 CMD进入到 jar 包所在位置&#xff0c;运行 mvn install:install-file -DgroupIdcom.alibaba -DartifactIdfastjson -Dversion1.1.37-Dfile fastjson-1.1.37.jar -Dpackaging…...

【剑指offer】03~05. 数组中的数字(C# 实现)

文章目录前言03. 数组中重复的数字04. 二维数组中的查找05. 替换空格结语前言 &#x1f603; 大家好&#xff0c;我是writer桑&#xff0c;这是自己整理的 C# 做题记录&#xff0c;方便自己学习的同时分享出来&#xff0c;感谢支持。 03. 数组中重复的数字 题目描述&#xff1…...

Docker入门教程

文章目录一、Docker概述1. 什么是容器技术&#xff1f;2. 什么是Docker3. 为什么要使用Docker4. Docker和虚拟机的对比5. Docker相关概念6. DockerHub7. Docker架构二、安装Docker1. 安装Docker2. 配置阿里云镜像加速三、Docker常用命令1. 帮助命令2. 镜像操作命令3. 容器操作命…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

学习一下用鸿蒙​​DevEco Studio HarmonyOS5实现百度地图

在鸿蒙&#xff08;HarmonyOS5&#xff09;中集成百度地图&#xff0c;可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API&#xff0c;可以构建跨设备的定位、导航和地图展示功能。 ​​1. 鸿蒙环境准备​​ ​​开发工具​​&#xff1a;下载安装 ​​De…...

Unity中的transform.up

2025年6月8日&#xff0c;周日下午 在Unity中&#xff0c;transform.up是Transform组件的一个属性&#xff0c;表示游戏对象在世界空间中的“上”方向&#xff08;Y轴正方向&#xff09;&#xff0c;且会随对象旋转动态变化。以下是关键点解析&#xff1a; 基本定义 transfor…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...