当前位置: 首页 > news >正文

高通滤波器,低通滤波器

1.高通滤波器是根据像素与邻近像素的亮度差值来提升该像素的亮度。 

import cv2
import numpy as np
from scipy import ndimagekernel_3_3 =np.array([[-1,-1,-1],[-1,8,-1],[-1,-1,-1]])
print(kernel_3_3)
kernel_5_5 =np.array([[-1,-1,-1,-1,-1],[-1,1,2,1,-1],[-1,2,4,2,-1],[-1,1,2,1,-1],[-1,-1,-1,-1,-1]])img =cv2.imread("x.jpg",0)
k3=ndimage.convolve(img,kernel_3_3)
print(k3)
k5=ndimage.convolve(img,kernel_5_5)blurred=cv2.GaussianBlur(img,(11,11),0)
g_hpf=img - blurred
cv2.imshow("3*3",k3)
cv2.imshow("5*5",k5)
cv2.imshow("g_hpf",g_hpf)
cv2.waitKey()
cv2.destroyAllWindows()

 确实容易看出,第三种效果最好。

2.

import cv2
import numpy as np
from scipy import ndimageblurKsize=7
edgeKsize=5
src=cv2.imread("x.jpg")
#模糊函数,对去除数字化的视频噪声很有效,尤其是彩色图像的噪声
blurredSrc=cv2.medianBlur(src,blurKsize)
cv2.imshow('blurredSrc',blurredSrc)
cv2.waitKey(0)
#彩色图转灰度图
graySrc=cv2.cvtColor(blurredSrc,cv2.COLOR_BGR2GRAY)
cv2.imshow('graySrc',graySrc)
cv2.waitKey(0)
#边缘检测函数,会产生明显的边缘线条
cv2.Laplacian(graySrc,cv2.CV_8U,graySrc,edgeKsize)
cv2.imshow('LapSrc',graySrc)
cv2.waitKey(0)#黑转白,白转黑
normalizedInverseAlpha =(1.0/255)*(255 - graySrc)
cv2.imshow('normalizedSrc',normalizedInverseAlpha)
cv2.waitKey(0)#重新恢复彩色,实现更清晰的轮廓图
channels=cv2.split(src)
for channel in channels:channel[:]=channel*normalizedInverseAlpha
dst=src.copy()
cv2.merge(channels,dst)
cv2.imshow('dst',dst)
cv2.waitKey(0)

使用medianBlur()作为模糊函数,它对去除数字化的视频噪声非常有效。 

从BGR色彩空间转灰度色彩空间

 使用Laplacian()作为边缘检测函数,它会产生明显的边缘线条 

 

转化为黑色边缘和白色背景的图像

 

 归一化:

 3.(1)锐化 

import cv2
import numpy as npsrc=cv2.imread("x.jpg")
kernel=np.array([[-1,-1,-1],[-1,9,-1],[-1,-1,-1]])
dst=src.copy()
cv2.filter2D(src,-1,kernel,dst)
cv2.imshow("pic",dst)
cv2.waitKey(0)

kernel=np.array([[-1,-1,-1],
                 [-1,9,-1],
                 [-1,-1,-1]])

如果感兴趣的像素已经与其邻近的像素有一点差别,那么这个差别会增加。

这样会让图像锐化。

filter2D()运用由用户指定的任意核或卷积矩阵。  

(2)边缘检测 

 

kernel=np.array([[-1,-1,-1],[-1,8,-1],[-1,-1,-1]])

此时为边缘检测核(权重加起来为0,把边缘转为白色,把非边缘区域转为黑色)

 (3)模糊效果

kernel=np.array([[0.04,0.04,0.04,0.04,0.04],[0.04,0.04,0.04,0.04,0.04],[0.04,0.04,0.04,0.04,0.04],[0.04,0.04,0.04,0.04,0.04],[0.04,0.04,0.04,0.04,0.04]])

通常权重为1,邻近像素的权重全为正。

 (4)模糊加锐化(产生脊状或浮雕效果)

kernel=np.array([[-2,-1,0],[-1,1,1],[0,1,2]])

相关文章:

高通滤波器,低通滤波器

1.高通滤波器是根据像素与邻近像素的亮度差值来提升该像素的亮度。 import cv2 import numpy as np from scipy import ndimagekernel_3_3 np.array([[-1,-1,-1],[-1,8,-1],[-1,-1,-1]]) print(kernel_3_3) kernel_5_5 np.array([[-1,-1,-1,-1,-1],[-1,1,2,1,-1],[-1,2,4,2,-…...

机器学习深度学习——卷积的多输入多输出通道

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习&&深度学习——从全连接层到卷积 📚订阅专栏:机器学习&&深度学习 希望文章对你们有所帮…...

HTML5中Canvas学习笔记:Canvas

目录 一、HTML中Canvas画图strokeStyle 和 fillStyle 的区别是什么? 二、如何设置一幅canvas图中某个颜色透明? 三、H5 canvas中strokeRect参数如果是小数,如何处理? 四、H5 Canvas中如何画圆角矩形框? 一、HTML中…...

Windows安装子系统Linux

Windows安装子系统(Linux ubuntu) 安装条件步骤1.安装WSL命令2.设置Linux用户名和密码3.写个简单的.c程序看看4.如何互传文件 安装条件 Windows 10版本2004及更高的版本才能安装。 步骤 1.安装WSL命令 我们可以使用WSL来安装子系统 Linux ubuntu(默认是这个)。 …...

C 语言的 pow() 函数

作用: Calculates x raised to the power of y. 函数原型: double pow( double x, double y ); Required Header: <math.h> Compatibility: ANSI Return Value pow returns the value of x y x^{y} xy. No error message is printed on overflow or underflow. Paramete…...

socket 基础

Socket是什么呢&#xff1f; ① Socket通常也称作“套接字”&#xff0c;用于描述IP地址和端口&#xff0c;是一个通信链的句柄。应用程序通常通过“套接字”向网络发出请求或者应答网络请求。 ② Socket是连接运行在网络上的两个程序间的双向通信的端点。 ③ 网络通讯其实指…...

JMeter(二十五)、一些概念的理解---90%响应时间、事务、并发

Jmeter中一些概念的理解——90%响应时间、事务、并发 一、90%响应时间(参考虫师博客) 90%Line 一组数由小到大进行排列,找到他的第90%个数(假如是12),那么这个数组中有90%的数将小于等于12 。 用在性能测试的响应时间,也就是90%请求响应时间不会超过12 秒。 例如:…...

直播课 | 大橡科技研发总监丁端尘博士“类器官芯片技术在新药研发中的应用”

从类器官到类器官芯片&#xff0c;正在生物科学领域大放异彩。 药物研发需要新方法 众所周知&#xff0c;一款新药是一个风险大、周期长、成本高的艰难历程&#xff0c;国际上有一个传统的“双十”说法——10年时间&#xff0c;10亿美金&#xff0c;才可能成功研发出一款新药…...

Python中的PDF文本提取:使用fitz和wxPython库(带进度条)

引言&#xff1a; 处理大量PDF文档的文本提取任务可能是一项繁琐的工作。本文将介绍一个使用Python编写的工具&#xff0c;可通过简单的操作一键提取大量PDF文档中的文本内容&#xff0c;极大地提高工作效率。 import wx import pathlib import fitzclass PDFExtractor(wx.Fr…...

mysql 将字段值+1或自增

一、解决方式&#xff1a; SET var 1; UPDATE jes_menu_info SET MENU_SORT (var : var 1) WHERE ss_idACC; 二、解读用户变量&#xff0c;在客户端链接到数据库实例整个过程中用户变量都是有效的。 MySQL中用户变量不用事前申明&#xff0c;在用的时候直接用“变量名”使…...

组合总和——力扣39

文章目录 题目描述回溯 题目描述 回溯 class Solution { public:vector<vector<int>> res;vector<int> seq; void dfs(vector<int>& nums, int pos, int target){if(target0){res.emplace_back(seq);return;}if(posnums.size()){return;}//直接跳过…...

PostgreSQL Patroni_exporter 监控 patroni高可用工具

Patroni是Cybertec公司基于python语言开发的&#xff0c;可用于使用流复制来创建&#xff0c;管理&#xff0c;维护和监视高可用性PostgreSQL集群设置的工具。 目前&#xff0c;PatroniEtcd 是最为推荐的PostgreSQL数据库高可用方案之一。 PostgreSQL有postgres_exporter监控采…...

C语言多级指针

#include "stdio.h" #include <stdlib.h>int main() {int a 10;//*p int a int *pint* p &a;int** q &p;//int** q int *(*q) int *(q) a//int**q int*(*q) int*(&a) int*&a aint*** k &q;//分析&#xff1a;首先k是个变量&…...

IDEA项目实践——创建Java项目以及创建Maven项目案例、使用数据库连接池创建项目简介

系列文章目录 IDEA上面书写wordcount的Scala文件具体操作 IDEA创建项目的操作步骤以及在虚拟机里面创建Scala的项目简单介绍 目录 系列文章目录 前言 一 准备工作 1.1 安装Maven 1.1.1 Maven安装配置步骤 1.1.2 解压相关的软件包 1.1.3 Maven 配置环境变量 1.1.4 配…...

ArraySetter

简介​ 用来展示属性类型为数组的 setter 展示​ 配置示例​ "setter": {"componentName": "ArraySetter","props": {"itemSetter": {"componentName": "ObjectSetter","props": {"c…...

Python如何解决Amazon亚马逊“图文验证码”识别(6)

前言 本文是该专栏的第55篇,后面会持续分享python爬虫干货知识,记得关注。 在本专栏前面,笔者有详细介绍多种登录验证码识别方法,感兴趣的同学可往前翻阅。而本文,笔者将单独详细介绍亚马逊Amazon的图文识别验证码的解决方法。 如上图所示,访问或请求频次达到一定程度之…...

plsql连接oracle出现TTC错误

这个错误莫名其妙&#xff0c;搜不到直接关联的解决方案。用了下面解决乱码的方式倒是解决了。 ORA-03137: TTC protocol internal error : [%s] [%s] [%s] [%s] [%s] [%s] [%s] [%s] 按照如下链接解决&#xff1a; PL/SQL Developer中文乱码解决方案_Bug君坤坤的博客-CSDN博…...

4-golang爬虫下载的代码

golang爬虫下载的代码&#xff1a; 下载程序的借鉴内容&#xff1a; 这个是关于gbk&#xff0c;utf8等相互转换的包 github.com/axgle/mahonia" 一、标准下载代码 package downloaderimport ("log""net/http""io""github.com/axgle/…...

Eureka增加账号密码认证登录

一、业务背景 注册中心Eureka在微服务开发中经常使用到&#xff0c;用来管理发布的微服务&#xff0c;供前端或者外部调用。但是如果放到生产环境&#xff0c;我们直接通过URL访问的话&#xff0c;这显然是不安全的。 所以需要给注册中心加上登录认证。 通过账号和密码认证进行…...

Practice5|58. 最后一个单词的长度、66. 加一

58. 最后一个单词的长度 1.题目&#xff1a; 给你一个字符串 s&#xff0c;由若干单词组成&#xff0c;单词前后用一些空格字符隔开。返回字符串中 最后一个 单词的长度。 单词 是指仅由字母组成、不包含任何空格字符的最大子字符串。 示例 1&#xff1a; 输入&#xff1a…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...