当前位置: 首页 > news >正文

opencv-34 图像平滑处理-双边滤波cv2.bilateralFilter()

双边滤波(BilateralFiltering)是一种图像处理滤波技术,用于平滑图像并同时保留边缘信息。与其他传统的线性滤波方法不同,双边滤波在考虑像素之间的空间距离之外,还考虑了像素之间的灰度值相似性。这使得双边滤波能够有效地去除噪声,同时保持图像的细节和边缘。

双边滤波的核心思想是使用一个滑动窗口(卷积核)在图像上移动,并计算窗口中像素的加权平均值来替代中心像素的值。这里的权重包括两个部分:一个是空间权重,根据像素之间的空间距离计算;另一个是灰度值权重,根据像素之间的灰度值相似性计算。空间权重用于保持边缘信息,而灰度值权重用于平滑图像。

在双边滤波中,窗口的大小和两个权重的参数是需要设置的超参数,它们会影响滤波效果。较大的窗口大小和权重参数可以保留更多的图像细节,但也会导致计算复杂度增加。

基本原理

前述滤波方式基本都只考虑了空间的权重信息,这种情况计算起来比较方便,但是在边缘信息的处理上存在较大的问题。

例如,在图 7-30 中,图像左侧是黑色,右侧是白色,中间是很明显的边缘。

在这里插入图片描述
在均值滤波、方框滤波、高斯滤波中,都会计算边缘上各个像素点的加权平均值,从而模糊边缘信息。

如图 7-31 所示是高斯滤波处理的结果图像。

在这里插入图片描述
从图 7-31 可以看到,经过高斯滤波处理后,边缘信息变得很模糊,均值滤波处理也会造成类似的问题。边界模糊是滤波处理过程中对邻域像素取均值所造成的结果,上述滤波处理过程单纯地考虑空间信息,造成了边界模糊和部分信息的丢失。

双边滤波在计算某一个像素点的新值时,不仅考虑距离信息(距离越远,权重越小),还考虑色彩信息(色彩差别越大,权重越小)。双边滤波综合考虑距离和色彩的权重结果,既能够有效地去除噪声,又能够较好地保护边缘信息。

在双边滤波中,当处在边缘时,与当前点色彩相近的像素点(颜色距离很近)会被给予较大的权重值;而与当前色彩差别较大的像素点(颜色距离很远)会被给予较小的权重值(极端情况下权重可能为 0,直接忽略该点),这样就保护了边缘信息。

例如,在图 7-32 中:

  1. 图(a)是原始图像,左侧区域是白色(像素值为 255),右侧区域是黑色(像素值为 0)。
  2. 图(b)是进行均值滤波的可能结果。在进行均值滤波时,仅仅考虑空间信息,此时左右两侧的像素的处理结果是综合考虑周边元素像素值,并对它们取均值得到的。
  3. 图©是进行双边滤波的可能结果。在进行双边滤波时,不仅考虑空间信息,还考虑色彩差别信息

在这里插入图片描述
在双边滤波中,在计算左侧白色区域边缘点的滤波结果时:

  1. 对于白色的点,给予的权重较大。

  2. 对于黑色的点,由于色彩差异较大,颜色距离很远(注意,不是像素点之间的物理距离,而是颜色值的距离。像素点的值分别是 0 和 255,差别很大,所以说它们颜色距离很远),因此可以将它们的权重设置为 0。

这样,在计算左侧白色边缘滤波结果时,得到的仍然是白色。因此,双边滤波后,左侧边缘得到保留。

在计算右侧黑色区域边缘点的滤波结果时:

  1. 对于黑色的点,给予的权重较大。

  2. 对于白色的点,由于色彩差异较大,颜色距离很远,因此可以将它们的权重设置为 0。

这样,在计算右侧黑色边缘滤波结果时,得到的仍然是黑色。因此,双边滤波后,左侧边缘得到保留。

cv2.bilateralFilter() 函数说明

在 OpenCV 中,实现双边滤波的函数是 cv2.bilateralFilter(),该函数的语法是:

dst = cv2.bilateralFilter( src, d, sigmaColor, sigmaSpace, borderType )

式中:

  1. dst 是返回值,表示进行双边滤波后得到的处理结果。
  2. src 是需要处理的图像,即原始图像。它能够有任意数量的通道,并能对各个通道独立
    处理。图像深度应该是 CV_8U、CV_16U、CV_16S、CV_32F 或者 CV_64F 中的一种。
  3. d 是在滤波时选取的空间距离参数,这里表示以当前像素点为中心点的直径。如果该值为非正数,则会自动从参数 sigmaSpace 计算得到。如果滤波空间较大(d>5),则速度较慢。因此,在实时应用中,推荐 d=5。对于较大噪声的离线滤波,可以选择 d=9。
  4. sigmaColor 是滤波处理时选取的颜色差值范围,该值决定了周围哪些像素点能够参与到滤波中来。与当前像素点的像素值差值小于 sigmaColor 的像素点,能够参与到当前的滤波中。该值越大,就说明周围有越多的像素点可以参与到运算中。该值为 0 时,滤波失去意义;该值为 255 时,指定直径内的所有点都能够参与运算。
  5. sigmaSpace 是坐标空间中的 sigma 值。它的值越大,说明有越多的点能够参与到滤波计算中来。当 d>0 时,无论 sigmaSpace 的值如何,d 都指定邻域大小;否则,d 与 sigmaSpace的值成比例。
  6. borderType 是边界样式,该值决定了以何种方式处理边界。一般情况下,不需要考虑该值,直接采用默认值即可。

为了简单起见,可以将两个 sigma(sigmaColor 和 sigmaSpace)值设置为相同的。如果它们的值比较小(例如小于
10),滤波的效果将不太明显;如果它们的值较大(例如大于 150),则滤波效果会比较明显,会产生卡通效果。在函数
cv2.bilateralFilter()中,参数 borderType 是可选参数,其余参数全部为必选参数。

实验:针对噪声图像,对其进行双边滤波,显示滤波的结果。

代码如下:

import cv2
o=cv2.imread("lenaNoise.png")
r=cv2.bilateralFilter(o,25,100,100)
cv2.imshow("original",o)
cv2.imshow("result",r)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述
其中左图是原始图像,右图是双边滤波的结果图像。从
图中可以看出,双边滤波去除噪声的效果并不好。

相关文章:

opencv-34 图像平滑处理-双边滤波cv2.bilateralFilter()

双边滤波(BilateralFiltering)是一种图像处理滤波技术,用于平滑图像并同时保留边缘信息。与其他传统的线性滤波方法不同,双边滤波在考虑像素之间的空间距离之外,还考虑了像素之间的灰度值相似性。这使得双边滤波能够有…...

Leetcode 268. Missing Number

Problem Given an array nums containing n distinct numbers in the range [0, n], return the only number in the range that is missing from the array. Algorithm Sum all the numbers as x x x and use n ( n 1 ) 2 − x \frac{n(n1)}{2} - x 2n(n1)​−x. Code …...

MybatisPlus实战笔记

概述 Mybatis支持定制化SQL、存储过程以及高级映射,避免几乎所有的 JDBC 代码和手动设置参数以及获取结果集。可以使用简单的 XML 或注解来配置和映射原生信息,将接口和Java的POJO映射成数据库中的记录。 缺点: SQL工作量很大,尤…...

Android Studio 报错:Failed to create Jar file xxxxx.jar

通过分析,新下载的项目没有project/gradle目录,故通过其他项目复制到当前项目,就解决了该问题。 同时也出现了新的问题 Unable to start the daemon process.The project uses Gradle 4.1 which is incompatible with Java 11 or newer.原因…...

Django实现音乐网站 ⑸

使用Python Django框架制作一个音乐网站, 本篇主要是配置媒体资源设置。 目录 配置介绍 设置媒体资源 创建媒体资源目录 修改settings.py 注册媒体资源路由 总结 配置介绍 静态资源是指项目配置的js/css/image等系统常用文件。对于一些经常变动的资源&#x…...

基于VUE3+Layui从头搭建通用后台管理系统(前端篇)七:工作台界面实现

一、本章内容 本章实现工作台界面相关内容,包括echart框架引入,mock框架引入等,实现工作台界面框架搭建,数据加载。 1. 详细课程地址: 待发布 2. 源码下载地址: 待发布 二、界面预览 三、开发视频 基于VUE3+Layui从头搭建通用后台管理系统合集-工作台界面布局实现 五、…...

前端vue uni-app自定义精美海报生成组件

在当前技术飞速发展的时代,软件开发的复杂度也在不断提高。传统的开发方式往往将一个系统做成整块应用,一个小的改动或者一个小功能的增加都可能引起整体逻辑的修改,从而造成牵一发而动全身的情况。为了解决这个问题,组件化开发逐…...

高通滤波器,低通滤波器

1.高通滤波器是根据像素与邻近像素的亮度差值来提升该像素的亮度。 import cv2 import numpy as np from scipy import ndimagekernel_3_3 np.array([[-1,-1,-1],[-1,8,-1],[-1,-1,-1]]) print(kernel_3_3) kernel_5_5 np.array([[-1,-1,-1,-1,-1],[-1,1,2,1,-1],[-1,2,4,2,-…...

机器学习深度学习——卷积的多输入多输出通道

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习&&深度学习——从全连接层到卷积 📚订阅专栏:机器学习&&深度学习 希望文章对你们有所帮…...

HTML5中Canvas学习笔记:Canvas

目录 一、HTML中Canvas画图strokeStyle 和 fillStyle 的区别是什么? 二、如何设置一幅canvas图中某个颜色透明? 三、H5 canvas中strokeRect参数如果是小数,如何处理? 四、H5 Canvas中如何画圆角矩形框? 一、HTML中…...

Windows安装子系统Linux

Windows安装子系统(Linux ubuntu) 安装条件步骤1.安装WSL命令2.设置Linux用户名和密码3.写个简单的.c程序看看4.如何互传文件 安装条件 Windows 10版本2004及更高的版本才能安装。 步骤 1.安装WSL命令 我们可以使用WSL来安装子系统 Linux ubuntu(默认是这个)。 …...

C 语言的 pow() 函数

作用: Calculates x raised to the power of y. 函数原型: double pow( double x, double y ); Required Header: <math.h> Compatibility: ANSI Return Value pow returns the value of x y x^{y} xy. No error message is printed on overflow or underflow. Paramete…...

socket 基础

Socket是什么呢&#xff1f; ① Socket通常也称作“套接字”&#xff0c;用于描述IP地址和端口&#xff0c;是一个通信链的句柄。应用程序通常通过“套接字”向网络发出请求或者应答网络请求。 ② Socket是连接运行在网络上的两个程序间的双向通信的端点。 ③ 网络通讯其实指…...

JMeter(二十五)、一些概念的理解---90%响应时间、事务、并发

Jmeter中一些概念的理解——90%响应时间、事务、并发 一、90%响应时间(参考虫师博客) 90%Line 一组数由小到大进行排列,找到他的第90%个数(假如是12),那么这个数组中有90%的数将小于等于12 。 用在性能测试的响应时间,也就是90%请求响应时间不会超过12 秒。 例如:…...

直播课 | 大橡科技研发总监丁端尘博士“类器官芯片技术在新药研发中的应用”

从类器官到类器官芯片&#xff0c;正在生物科学领域大放异彩。 药物研发需要新方法 众所周知&#xff0c;一款新药是一个风险大、周期长、成本高的艰难历程&#xff0c;国际上有一个传统的“双十”说法——10年时间&#xff0c;10亿美金&#xff0c;才可能成功研发出一款新药…...

Python中的PDF文本提取:使用fitz和wxPython库(带进度条)

引言&#xff1a; 处理大量PDF文档的文本提取任务可能是一项繁琐的工作。本文将介绍一个使用Python编写的工具&#xff0c;可通过简单的操作一键提取大量PDF文档中的文本内容&#xff0c;极大地提高工作效率。 import wx import pathlib import fitzclass PDFExtractor(wx.Fr…...

mysql 将字段值+1或自增

一、解决方式&#xff1a; SET var 1; UPDATE jes_menu_info SET MENU_SORT (var : var 1) WHERE ss_idACC; 二、解读用户变量&#xff0c;在客户端链接到数据库实例整个过程中用户变量都是有效的。 MySQL中用户变量不用事前申明&#xff0c;在用的时候直接用“变量名”使…...

组合总和——力扣39

文章目录 题目描述回溯 题目描述 回溯 class Solution { public:vector<vector<int>> res;vector<int> seq; void dfs(vector<int>& nums, int pos, int target){if(target0){res.emplace_back(seq);return;}if(posnums.size()){return;}//直接跳过…...

PostgreSQL Patroni_exporter 监控 patroni高可用工具

Patroni是Cybertec公司基于python语言开发的&#xff0c;可用于使用流复制来创建&#xff0c;管理&#xff0c;维护和监视高可用性PostgreSQL集群设置的工具。 目前&#xff0c;PatroniEtcd 是最为推荐的PostgreSQL数据库高可用方案之一。 PostgreSQL有postgres_exporter监控采…...

C语言多级指针

#include "stdio.h" #include <stdlib.h>int main() {int a 10;//*p int a int *pint* p &a;int** q &p;//int** q int *(*q) int *(q) a//int**q int*(*q) int*(&a) int*&a aint*** k &q;//分析&#xff1a;首先k是个变量&…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...

腾讯云V3签名

想要接入腾讯云的Api&#xff0c;必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口&#xff0c;但总是卡在签名这一步&#xff0c;最后放弃选择SDK&#xff0c;这次终于自己代码实现。 可能腾讯云翻新了接口文档&#xff0c;现在阅读起来&#xff0c;清晰了很多&…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...