Meta开源AI音频和音乐生成模型
在过去的几年里,我们看到了AI在图像、视频和文本生成方面的巨大进步。然而,音频生成领域的进展却相对滞后。MetaAI这次再为开源贡献重磅产品:AudioCraft,一个支持多个音频生成模型的音频生成开发框架。
AudioCraft开源地址
开源地址:https://github.com/facebookresearch/audiocraft
注意,该框架开源,但是三个模型开源不可商用哦~~
AudioGen模型地址:
https://www.datalearner.com/ai-models/pretrained-models/AudioGen
MusicGen模型地址:
https://www.datalearner.com/ai-models/pretrained-models/MusicGen
AudioCraft简介
产生高保真音频任何类型的音频都需要对不同尺度的复杂信号和模式进行建模。音乐可能是最具挑战性的音频类型,因为它由局部和长程模式组成,从一系列音符到具有多种乐器的全局音乐结构。利用AI生成连贯的音乐通常通过使用类似MIDI或钢琴卷的符号表示来实现。然而,这些方法无法完全捕捉到音乐中的表现细微差异和风格元素。
为此MetaAI开源了AudioCraft,一个可以用来生成音频的框架。它支持一系列的模型,能够产生高质量的音频,并具有长期的一致性,用户可以通过自然界面轻松地与其进行交互。
AudioCraft适用于音乐和声音生成以及压缩,所有这些都在同一个平台上进行。由于易于构建和重复使用,希望构建更好的声音生成器、压缩算法或音乐生成器的人可以在同一个代码库中完成所有操作,并在其他人已有基础上进一步发展。
AudioCraft支持的模型
AudioCraft由三个模型组成:MusicGen、AudioGen和EnCodec。MusicGen使用Meta拥有和特别许可的音乐进行训练,从文本输入生成音乐,而AudioGen则使用公开的音效进行训练,从文本输入生成音频。此外,还有改进版的EnCodec解码器,它可以生成更高质量的音乐,减少了人工制作的痕迹。
简单来说,MusicGen就是文本生成音乐的模型:
https://www.datalearner.com/ai-models/pretrained-models/MusicGen
AudioGen就是文本生成任意音频的模型:
https://www.datalearner.com/ai-models/pretrained-models/AudioGen
另外的EnCodec是指利用神经网络的实时、高保真音频编解码器。
下图是官方演示的AudioGen和MusicGen的实际案例:
可以看到,对于AudioGen模型,只需要给一段文字即可生成音乐,第一个例子是让模型生成一段带有风声的口哨,结果很好。
注意,我这里是图片不能实际测试,大家可以去官方看真实效果。
而MusicGen模型则是一个描述即可生成音乐,虽然我不懂的,但是我觉得还挺好听的。
AudioCraft使用
AudioCraft依赖Python3.9和PyTorch2.0,所以需要先确保你的系统环境满足,可以通过如下命令安装升级:
# Best to make sure you have torch installed first, in particular before installing xformers.# Don't run this if you already have PyTorch installed.pip install 'torch>=2.0'# Then proceed to one of the followingpip install -U audiocraft # stable releasepip install -U git+https://git@github.com/facebookresearch/audiocraft#egg=audiocraft # bleeding edgepip install -e .# or if you cloned the repo locally (mandatory if you want to train).
官方也推荐在系统中安装ffmpeg
:
sudo apt-get install ffmpeg
如果你有anaconda,也可以如下命令安装:
conda install 'ffmpeg<5'-c conda-forge
安装完之后使用很简单:
import torchaudiofrom audiocraft.models importAudioGenfrom audiocraft.data.audio import audio_writemodel =AudioGen.get_pretrained('facebook/audiogen-medium')model.set_generation_params(duration=5)# generate 8 seconds.wav = model.generate_unconditional(4)# generates 4 unconditional audio samplesdescriptions =['dog barking','sirene of an emergency vehicule','footsteps in a corridor']wav = model.generate(descriptions)# generates 3 samples.for idx, one_wav in enumerate(wav):# Will save under {idx}.wav, with loudness normalization at -14 db LUFS.audio_write(f'{idx}', one_wav.cpu(), model.sample_rate, strategy="loudness", loudness_compressor=True)
相关文章:

Meta开源AI音频和音乐生成模型
在过去的几年里,我们看到了AI在图像、视频和文本生成方面的巨大进步。然而,音频生成领域的进展却相对滞后。MetaAI这次再为开源贡献重磅产品:AudioCraft,一个支持多个音频生成模型的音频生成开发框架。 AudioCraft开源地址 开源地…...
rust怎么解析json数据?
关注我,学习Rust不迷路!! 在 Rust 中,你可以使用 serde 库来实现结构体与 JSON 之间的互相转换。 serde 是 Rust 社区最常用的序列化和反序列化库,它提供了方便的功能来处理结构体与 JSON 之间的转换。 首先ÿ…...

STM32 NOR_FLASH 学习
NOR FLASH FLASH是常用的,用于存储数据的半导体器件,它具有容量大,可重复擦写、按“扇区/块”擦除、掉电后数据可继续保存的特性。 NOR FLASH的单位是MB,EEPROM的单位是KB。 NM25Q128,是NOR FLASH的一种,…...

【数据结构|二叉树遍历】递归与非递归实现前序遍历、中序遍历、后序遍历
递归与非递归实现二叉树的前序遍历、中序遍历、后序遍历。 二叉树图 定义 前序遍历(Preorder Traversal): 前序遍历的顺序是先访问根节点,然后按照先左后右的顺序访问子节点。对于上面的二叉树,前序遍历的结果是&…...

iPhone 8 Plus透明屏有哪些场景化应用?
iPhone 8 Plus是苹果公司于2017年推出的一款智能手机,它采用了全新的玻璃机身设计,使得手机更加美观和时尚。 而透明屏则是一种新型的屏幕技术,可以使手机屏幕呈现出透明的效果,给人一种科技感十足的视觉体验。 透明屏是通过使用…...

解决 MySQL 删除数据后,ID 自增不连续问题
修复前 除了部分数据,导致后续新增的数据,ID 自增不连续 解决方案 执行下方 SQL 语句即可修复此问题,mbs_order为需要修复的表名 SET i0; UPDATE mbs_order SET id(i:i1); ALTER TABLE mbs_order AUTO_INCREMENT0;...

arcgis--网络分析(理论篇)
1、定义概念 (1)网络:由一系列相互联通的点和线组成,用来描述地理要素(资源)的流动情况。 (2)网络分析:对地理网络(如交通网络、水系网络)&…...

Linux笔记1(系统状态等)
man命令: man name: man section name: man -k regexp: 在 Linux 中,man 命令用于查看命令、函数或配置文件等的手册页,提供了详细的帮助文档。man 是 "manual" 的缩写。man 命令的用法如下: man [选项] [命令名]例如&…...

Set-up ESP-AT Environment on Windows using CMD
Before you start, the following environments need to be installed: Git BashPython environment, suggest Python version: 3.8.7. Please ensure the installation of Python v3.8 version environment, and remember to select the option “add to PATH” during the in…...

SpringBoot中Redis报错:NOAUTH Authentication required
1、问题 org.springframework.dao.InvalidDataAccessApiUsageException: NOAUTH Authentication required.; nested exception is redis.clients.jedis.exceptions.JedisDataException: NOAUTH Authentication required. … 2、解决 如果提供了密码还没解决,那可能是…...

需求飙升120%!芭比产品火爆出圈,意大利人争相购买!
据外媒报道,真人版《芭比》成为今年夏天最火的电影,仅在美国和加拿大,该影片的票房收入就超过3.5亿美元。在意大利《芭比》也备受追捧,目前的票房收入突破1670万欧元,成为2023年观看人数第三多的电影。 除了电影界之外…...

echarts-pie---------3D曲状环形饼图实现!!!
示例(参考此处饼图修改https://www.isqqw.com/viewer?id37497) 话不多说直接上代码 此套代码可以直接再echarts官网中的此处运行 let selectedIndex ; let hoveredIndex ; option getPie3D([{name: 数学,value: 60,itemStyle: {color: #1890FF,},},{…...

合并两个有序链表(leetcode)
题目 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 输入:l1 [1,2,4], l2 [1,3,4] 输出:[1,1,2,3,4,4]思路 每次递归都会比较当前两个节点的值,选择较小的节点作为合并后的链…...

CAS之AtomicReference原理解析
如果你了解了AtomicInteger的工作原理,或者看了如下文章,知道了AtomicInteger只能对当个int类型共享变量做cas的缺点。 CAS之AtomicInteger原理解析_z275598733的博客-CSDN博客 那么AtomicReference就是来解决这个问题的。原理很类似,只是A…...
JS/JQ实现字符串加密成 HEX(十六进制) 字符串
应用场景: 1、数据传输:在网络通信或数据存储中,将字符串转换为十六进制格式可以确保数据的可靠传输和存储。十六进制字符串只包含数字和字母,而不涉及控制字符或其他特殊字符,因此避免了特殊字符在传输过程中引起的问…...

骨传导耳机怎么样?盘点五款适合室外佩戴的骨传导耳机
不知道各位出去玩的时候,有没有觉得外面的世界太喧嚣,需要一副耳机开启自己的小天地,相信有很多人都有这种习惯,在路上戴着耳机享受属于自己的那一片天地,可是市面上种类这么多耳机,该如何选择呢࿰…...

【flink】使用flink-web-ui提交作业报错
使用WebUI提交作业出现错误。 错误截图: 弹框信息: Server Response Message: org.apache.flink.runtime.rest.handler.RestHandlerException: Could not execute application.at org.apache.flink.runtime.webmonitor.handlers.JarRunHandler.lambda$h…...

「从零入门推荐系统」22:chatGPT、大模型在推荐系统中的应用
作者 | gongyouliu 编辑 | gongyouliu 提示:全文2.5万字,预计阅读时长2小时,可以先收藏再慢慢阅读。 我们在上一章介绍了chatGPT、大模型的基本概念、核心技术原理等基础知识,有了这些背景知识的铺垫,下面我们来介绍ch…...

机器学习---概述(一)
文章目录 1.人工智能、机器学习、深度学习2.机器学习的工作流程2.1 获取数据集2.2 数据基本处理2.3 特征工程2.3.1 特征提取2.3.2 特征预处理2.3.3 特征降维 2.4 机器学习2.5 模型评估 3.机器学习的算法分类3.1 监督学习3.1.1 回归问题3.1.2 分类问题 3.2 无监督学习3.3 半监督…...
概念解析 | AutoFed:面向异构数据的联邦多模态自动驾驶的学习框架
AutoFed:面向异构数据的联邦多模态自动驾驶的学习框架 注1:本文系“概念解析”系列之一,致力于简洁清晰地解释、辨析复杂而专业的概念。本次辨析的概念是:面向异构数据的联邦学习在自动驾驶中的应用。 参考文献:Zheng T, Li A, Chen Z, et al. AutoFed: Heterogeneity-Aware F…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...

linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...

uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...

深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...

初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...

C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...

FFmpeg avformat_open_input函数分析
函数内部的总体流程如下: avformat_open_input 精简后的代码如下: int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...

使用SSE解决获取状态不一致问题
使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件,这个上传文件是整体功能的一部分,文件在上传的过程中…...