使用梯度下降的线性回归(Matlab代码实现)
目录
💥1 概述
📚2 运行结果
🎉3 参考文献
👨💻4 Matlab代码
💥1 概述
梯度下降法,是一种基于搜索的最优化方法,最用是最小化一个损失函数。梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。
📚2 运行结果





主函数部分代码:
%--------------------------------------------------------------------------
%LOCAL FUNCTIONS
%--------------------------------------------------------------------------
function generateLossGraph(N,x_d,y_d)
range = 2;
M_ = 500;
b_ = linspace(-range,range,M_);
m_ = linspace(-range,range,M_);
[B,M] = meshgrid(b_,m_);
reg = zeros([1,N]);
loss_function = zeros(M_);
for j=1:M_
for i=1:M_
for k=1:N
reg(1,k) = m_(j)*x_d(k) + b_(i);
end
loss_function(i,j) = sum((reg-y_d).^2);
end
end
axes(loss_function_graph)
pcolor(B,M,loss_function)
xlabel('angular coeficient (m)')
ylabel('linear coeficient (b)')
title('2D Loss Function')
shading interp
axis image
colormap jet
end
function delete_a_graph_component_from_its_tag(obj_handle,tag_name)
obj = findobj(obj_handle,'Tag',tag_name);
if(~isempty(obj))
delete(obj)
end
end
function [posX,posY,Width,Height]=centralizeWindow(Width_,Height_)
%Size of the screen
screensize = get(0,'Screensize');
Width = screensize(3);
Height = screensize(4);
posX = (Width/2)-(Width_/2);
posY = (Height/2)-(Height_/2);
Width=Width_;
Height=Height_;
end
end
🎉3 参考文献
[1]李兴怡,岳洋.梯度下降算法研究综述[J].软件工程,2020,23(02):1-4.DOI:10.19644/j.cnki.issn2096-1472.2020.02.001.
👨💻4 Matlab代码
相关文章:
使用梯度下降的线性回归(Matlab代码实现)
目录 💥1 概述 📚2 运行结果 🎉3 参考文献 👨💻4 Matlab代码 💥1 概述 梯度下降法,是一种基于搜索的最优化方法,最用是最小化一个损失函数。梯度下降是迭代法的一种,可以用于求…...
在Ubuntu上设置MySQL可以远程登录
在Ubuntu上设置MySQL可以远程登录一.设置数据库二.设置防火墙由于Ubuntu查看修改MySQL不是很方便,想着在虚拟机安装的Windows系统或者局域网中的其他电脑上去查看Ubuntu系统上的数据库,这样省事一些,我电脑安装的数据库是MySQL8。一.设置数据…...
清风1.层次分析法
一.流程1.建立评价体系2.建立判断矩阵2.1 A-C-C矩阵从准则层对目标层的特征向量上看,花费的权重最大算术平均法求权重的结果为:0.26230.47440.05450.09850.1103几何平均法求权重的结果为:0.26360.47730.05310.09880.1072特征值法求权重的结果…...
「首席架构师推荐」免费数据可视化软件你喜欢哪一个?
数据可视化,是关于数据视觉表现形式的科学技术研究。其中,这种数据的视觉表现形式被定义为,一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量。它是一个处于不断演变之中的概念,其边界在不断地扩大…...
深度学习术语解释:backbone、head、neck,etc
backbone:翻译为主干网络的意思,既然说是主干网络,就代表其是网络的一部分,那么是哪部分呢?这个主干网络大多时候指的是提取特征的网络,其作用就是提取图片中的信息,共后面的网络使用。这些网络…...
基础篇—CSS margin(外边距)解析
什么是CSS margin(外边距)? CSS margin(外边距)属性定义元素周围的空间。 属性描述margin简写属性。在一个声明中设置所有外边距属性。margin-bottom设置元素的下外边距。margin-left设置元素的左外边距。margin-right设置元素的右外边距。margin-top设置元素的上外边距。mar…...
ChatGPT或将引发新一轮失业潮?是真的吗?
最近,要说有什么热度不减的话题,那ChatGPT必然榜上有名。据悉是这是由美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类…...
【Selenium学习】Selenium 中特殊元素操作
1.鼠标定位操作鼠标悬停,即当光标与其名称表示的元素重叠时触发的事件,在 Selenium 中将键盘鼠标操作封装在 Action Chains 类中。Action Chains 类的主要应用场景为单击鼠标、双击鼠标、鼠标拖曳等。部分常用的方法使用分类如下:• click(on…...
Spark相关的依赖冲突,后期持续更新总结
Spark相关的依赖冲突持续更新总结 Spark-Hive_2.11依赖报错 这个依赖是Spark开启支持hive SQL解析,其中2.11是Spark对应的Scala版本,如Spark2.4.7,对应的Scala版本是2.11.12;这个依赖会由于Spark内部调用的依赖guava的版本问题出…...
【每日一题Day122】LC1237找出给定方程的正整数解 | 双指针 二分查找
找出给定方程的正整数解【LC1237】 给你一个函数 f(x, y) 和一个目标结果 z,函数公式未知,请你计算方程 f(x,y) z 所有可能的正整数 数对 x 和 y。满足条件的结果数对可以按任意顺序返回。 尽管函数的具体式子未知,但它是单调递增函数&#…...
笔记本加装固态和内存条教程(超详细)
由于笔记本是几年前买的了,当时是4000,现在用起来感到卡顿,启动、运行速度特别慢,就决定换个固态硬盘,加个内存条,再给笔记本续命几年。先说一下加固态硬盘SSD的好处:1.启动快 2.读取延迟小 3.写…...
【Python】字典 - Dictionary
字典 - Dictionarykeys()values()items()get()获取文件中指定字符的个数进阶版:获取所有单词的频数进阶版:获取所有字符的频数函数内容keys()输出字典中的所有键values()输出字典中的所有值items()以元组的形式输出键值对get()获取字典中指定键的值 keys…...
LeetCode分类刷题----二叉树
二叉树1.二叉树的递归遍历144.二叉树的前序遍历145.二叉树的后序遍历94.二叉树的中序遍历2.二叉树的迭代遍历144.二叉树的前序遍历145.二叉树的后序遍历94.二叉树的中序遍历3.二叉树的层序遍历102.二叉树的层序遍历107.二叉树的层序遍历||199.二叉树的右视图637.二叉树的层平均…...
Zipkin : Golang 微服务全链路监控(三)
Zipkin : Golang 微服务全链路监控(三) Golang 微服务全链路监控实现 broker-service -> auth-service -> postgres dbzipkin 监控:需代码入侵 使用 zipkin 库的 serverMiddleware,其通过 Http 跟踪(trace&am…...
5.3 BGP路由黑洞
5.2.3实验3:BGP路由黑洞 1. 实验目的 熟悉BGP路由黑洞的应用场景掌握BGP水平分割的配置方法2. 实验拓扑 实验拓扑如图5-3所示: 图5-3:BGP路由黑洞 3. 实验步骤 配置IP地址 R1的配置 <Huawei>syst...
STM32 DFU模式烧录代码
什么是DFU? dfu的本质是isp,usb接口的isp,在系统编程,进入isp的方式我们先了解 如下图 boot0为高电平 boot1为低电平即可进入isp模式。 熟悉的场景 在我们使用flymcu软件下载代码时,本质也是isp 串口接口的isp。 傻瓜使用方式…...
松下PLC通过fpwin上传写入MRTC模块方法
目录 PLC程序上传方法 加密模块使用 PLC程序上传方法 手动将PLC模式设置为prog模式查看PLC是否设置为禁止上传查询指示灯是否变蓝,变蓝则需要将PLC禁止上传功能取消。 3.当上述动作操作完成后,将PLC程序导入到PLC中。为了配合加密程序使用,…...
就业大山之下的网络安全:安逸的安服仔
从去年开始,各个互联网大厂就接二连三的放出了裁员消息,整个互联网行业好像都处于寒冬状态。微博、小米、滴滴、知乎、拼多多等在内的一大批互联网知名企业,也相继传出“人员优化”的消息。 除了国内市场的萧条,国外市场也是不容…...
JavaWeb3-线程的3种创建方式7种写法
目录 1.方式一:继承Thread(2种写法) 写法①(常规): a.使用jconsole观察线程 b.启动线程——start方法 PS:(常见面试题)start 方法与 run 方法的区别: 写…...
驱动调试手段
文章目录 前言一、通过sysfs调试LCD查看电源:查看 pwm 信息查看管脚信息总结前言 本文记录在驱动中常用的调试手段 提示:以下是本篇文章正文内容,下面案例可供参考 一、通过sysfs 系统起来之后可以读取 sysfs 一些信息,来协助调试 示例: 调试LCD 输入如下命令 cat /…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
