包装器function
std::function模板类是一个通用的可调用对象的包装器,用简单的、统一的方式处理可调用对象。
template<class _Fty>
class function……
_Fty是可调用对象的类型,格式:返回类型(参数列表)。
包含头文件:#include <functional>
注意:
重载了bool运算符,用于判断是否包装了可调用对象。
如果std::function对象未包装可调用对象,使用std::function对象将抛出std::bad_function_call异常。
示例:
#include <iostream>
#include <functional>
using namespace std;// 普通函数
void show(int bh, const string& message) {cout << "亲爱的" << bh << "," << message << endl;
}struct AA // 类中有静态成员函数。
{static void show(int bh, const string& message) {cout << "亲爱的" << bh << "," << message << endl;}
};struct BB // 仿函数。
{void operator()(int bh, const string& message) {cout << "亲爱的" << bh << "," << message << endl;}
};struct CC // 类中有普通成员函数。
{void show(int bh, const string& message) {cout << "亲爱的" << bh << "," << message << endl;}
};struct DD // 可以被转换为普通函数指针的类。
{using Fun = void (*)(int, const string&); // 函数指针的别名。operator Fun() {return show; // 返回普通函数show的地址。}
};int main()
{using Fun = void(int, const string&); // 函数类型的别名。// 普通函数。void(*fp1)(int, const string&) = show; // 声明函数指针,指向函数对象。fp1(1, "我是一只傻傻鸟。"); // 用函数指针调用普通函数。function<void(int, const string&)> fn1 = show; // 包装普通全局函数show。fn1(1, "我是一只傻傻鸟。"); // 用function对象调用普通全局函数show。// 类的静态成员函数。void(*fp3)(int, const string&) = AA::show; // 用函数指针指向类的静态成员函数。fp3(2, "我是一只傻傻鸟。"); // 用函数指针调用类的静态成员函数。function<void(int, const string&)> fn3 = AA::show; // 包装类的静态成员函数。fn3(2, "我是一只傻傻鸟。"); // 用function对象调用类的静态成员函数。// 仿函数。BB bb;bb(3, "我是一只傻傻鸟。"); // 用仿函数对象调用仿函数。function<void(int, const string&)> fn4 = BB(); // 包装仿函数。fn4(3, "我是一只傻傻鸟。"); // 用function对象调用仿函数。// 创建lambda对象。auto lb = [](int bh, const string& message) {cout << "亲爱的" << bh << "," << message << endl;};lb(4, "我是一只傻傻鸟。"); // 调用lambda函数。function<void(int, const string&)> fn5 = lb; // 包装lamba函数。fn5(4, "我是一只傻傻鸟。"); // 用function对象调用lamba函数。// 类的非静态成员函数。CC cc;void (CC:: * fp11)(int, const string&) = &CC::show; // 定义类成员函数的指针。(cc.*fp11)(5, "我是一只傻傻鸟。"); // 用类成员函数的指针调用类的成员函数。function<void(CC&,int, const string&)> fn11 = &CC::show; // 包装成员函数。fn11(cc,5, "我是一只傻傻鸟。"); // 用function对象调用成员函数。// 可以被转换为函数指针的类对象。DD dd;dd(6, "我是一只傻傻鸟。"); // 用可以被转换为函数指针的类对象调用普通函数。function<void(int, const string&)> fn12 = dd; // 包装可以被转换为函数指针的类。fn12(6, "我是一只傻傻鸟。"); // 用function对象调用它。function<void(int, const string&)> fx=dd;try {if (fx) fx(6, "我是一只傻傻鸟。");}catch (std::bad_function_call e) {cout << "抛出了std::bad_function_call异常。";}
}
std::bind()模板函数是一个通用的函数适配器(绑定器),它用一个可调用对象及其参数,生成一个新的可调用对象,以适应模板。
包含头文件:#include <functional>
函数原型:
template< class Fx, class... Args >
function<> bind (Fx&& fx, Args&...args);
Fx:需要绑定的可调用对象(可以是前两节课介绍的那六种,也可以是function对象)。
args:绑定参数列表,可以是左值、右值和参数占位符std::placeholders::_n,如果参数不是占位符,缺省为值传递,std:: ref(参数)则为引用传递。
std::bind()返回std::function的对象。
std::bind()的本质是仿函数。
示例一(bind的基本用法):
#include <iostream>
#include <functional>
using namespace std;// 普通函数
void show(int bh, const string& message) {cout << "亲爱的" << bh << "号," << message << endl;
}int main()
{function<void(int, const string&)> fn1 = show;function<void(int, const string&)> fn2 = bind(show, placeholders::_1, placeholders::_2);fn1(1, "我是一只傻傻鸟。");fn2(1, "我是一只傻傻鸟。");function<void(const string&, int)> fn3 = bind(show, placeholders::_2, placeholders::_1);fn3("我是一只傻傻鸟。", 1);function<void(const string&)> fn4 = bind(show, 3, placeholders::_1);fn4("我是一只傻傻鸟。");function<void(int, const string&,int)> fn5 = bind(show, placeholders::_1, placeholders::_2);fn5(1, "我是一只傻傻鸟。", 88);
}
示例二(绑定六种可调用对象):
#include <iostream>
#include <functional>
using namespace std;// 普通函数
void show(int bh, const string& message) {cout << "亲爱的" << bh << "," << message << endl;
}struct AA // 类中有静态成员函数。
{static void show(int bh, const string& message) {cout << "亲爱的" << bh << "," << message << endl;}
};struct BB // 仿函数。
{void operator()(int bh, const string& message) {cout << "亲爱的" << bh << "," << message << endl;}
};struct CC // 类中有普通成员函数。
{void show(int bh, const string& message) {cout << "亲爱的" << bh << "," << message << endl;}
};struct DD // 可以被转换为普通函数指针的类。
{using Fun = void (*)(int, const string&); // 函数指针的别名。operator Fun() {return show; // 返回普通函数show的地址。}
};int main()
{// 普通函数。function<void(int, const string&)> fn1 = bind(show, placeholders::_1, placeholders::_2); // 绑定普通全局函数show。fn1(1, "我是一只傻傻鸟。"); // 用function对象调用普通全局函数show。// 类的静态成员函数。function<void(int, const string&)> fn3 = bind(AA::show, placeholders::_1, placeholders::_2); // 绑定类的静态成员函数。fn3(2, "我是一只傻傻鸟。"); // 用function对象调用类的静态成员函数。// 仿函数。function<void(int, const string&)> fn4 = bind(BB(), placeholders::_1, placeholders::_2); // 绑定仿函数。fn4(3, "我是一只傻傻鸟。"); // 用function对象调用仿函数。// 创建lambda对象。auto lb = [](int bh, const string& message) {cout << "亲爱的" << bh << "," << message << endl;};function<void(int, const string&)> fn5 = bind(lb, placeholders::_1, placeholders::_2); // 绑定lamba函数。fn5(4, "我是一只傻傻鸟。"); // 用function对象调用lamba函数。// 类的非静态成员函数。CC cc;//function<void(CC&, int, const string&)> fn11 = bind(&CC::show, placeholders::_1, placeholders::_2, placeholders::_3); // 绑定成员函数。//fn11(cc, 5, "我是一只傻傻鸟。"); // 用function对象调用成员函数。function<void(int, const string&)> fn11 = bind(&CC::show,&cc,placeholders::_1, placeholders::_2); // 绑定成员函数。fn11(5, "我是一只傻傻鸟。"); // 用function对象调用成员函数。// 可以被转换为函数指针的类对象。DD dd;function<void(int, const string&)> fn12 = bind(dd, placeholders::_1, placeholders::_2); // 绑定可以被转换为函数指针的类。fn12(6, "我是一只傻傻鸟。"); // 用function对象调用它。
}
写一个函数,函数的参数是函数对象及参数,功能和thread类的构造函数相同。
示例:
#include <iostream>
#include <thread>
#include <functional>
using namespace std;void show0() { // 普通函数。cout << "亲爱的,我是一只傻傻鸟。\n";
}void show1(const string& message) { // 普通函数。cout << "亲爱的," << message << endl;
}struct CC // 类中有普通成员函数。
{void show2(int bh, const string& message) {cout << "亲爱的" << bh << "号," << message << endl;}
};template<typename Fn, typename...Args>
auto show(Fn&& fn, Args&&...args) -> decltype(bind(forward<Fn>(fn), forward<Args>(args)...))
{cout << "表白前的准备工作......\n";auto f = bind(forward<Fn>(fn), forward<Args>(args)...);f();cout << "表白完成。\n";return f;
}int main()
{show(show0);show(show1,"我是一只傻傻鸟。");CC cc;auto f = show(&CC::show2,&cc, 3,"我是一只傻傻鸟。");f();//thread t1(show0);//thread t2(show1,"我是一只傻傻鸟。");//CC cc;//thread t3(&CC::show2,&cc, 3,"我是一只傻傻鸟。");//t1.join();//t2.join();//t3.join();
}
在消息队列和网络库的框架中,当接收到消息(报文)时,回调用户自定义的函数对象,把消息(报文)参数传给它,由它决定如何处理。
示例:
#include <iostream>
#include <string>
#include <thread> // 线程类头文件。
#include <mutex> // 互斥锁类的头文件。
#include <deque> // deque容器的头文件。
#include <queue> // queue容器的头文件。
#include <condition_variable> // 条件变量的头文件。
#include <functional>
using namespace std;void show(const string& message) { // 处理业务的普通函数cout << "处理数据:" << message << endl;
}struct BB { // 处理业务的类void show(const string& message) {cout << "处理表白数据:" << message << endl;}
};class AA
{mutex m_mutex; // 互斥锁。condition_variable m_cond; // 条件变量。queue<string, deque<string>> m_q; // 缓存队列,底层容器用deque。function<void(const string&)> m_callback; // 回调函数对象。
public:// 注册回调函数,回调函数只有一个参数(消费者接收到的数据)。template<typename Fn, typename ...Args>void callback(Fn && fn, Args&&...args) {m_callback = bind(forward<Fn>(fn), forward<Args>(args)..., std::placeholders::_1); // 绑定回调函数。}void incache(int num) // 生产数据,num指定数据的个数。{lock_guard<mutex> lock(m_mutex); // 申请加锁。for (int ii = 0; ii < num; ii++){static int bh = 1; // 超女编号。string message = to_string(bh++) + "号超女"; // 拼接出一个数据。m_q.push(message); // 把生产出来的数据入队。}//m_cond.notify_one(); // 唤醒一个被当前条件变量阻塞的线程。m_cond.notify_all(); // 唤醒全部被当前条件变量阻塞的线程。}void outcache() { // 消费者线程任务函数。while (true) {// 把互斥锁转换成unique_lock<mutex>,并申请加锁。unique_lock<mutex> lock(m_mutex);// 1)把互斥锁解开;2)阻塞,等待被唤醒;3)给互斥锁加锁。m_cond.wait(lock, [this] { return !m_q.empty(); });// 数据元素出队。string message = m_q.front(); m_q.pop();cout << "线程:" << this_thread::get_id() << "," << message << endl;lock.unlock(); // 手工解锁。// 处理出队的数据(把数据消费掉)。if (m_callback) m_callback(message); // 回调函数,把收到的数据传给它。}}
};int main()
{AA aa;// aa.callback(show); // 把普通函数show()注册为回调函数。BB bb;aa.callback(&BB::show, &bb); // 把类成员函数BB::show()注册为回调函数。thread t1(&AA::outcache, &aa); // 创建消费者线程t1。thread t2(&AA::outcache, &aa); // 创建消费者线程t2。thread t3(&AA::outcache, &aa); // 创建消费者线程t3。this_thread::sleep_for(chrono::seconds(2)); // 休眠2秒。aa.incache(2); // 生产2个数据。this_thread::sleep_for(chrono::seconds(3)); // 休眠3秒。aa.incache(5); // 生产5个数据。t1.join(); // 回收子线程的资源。t2.join();t3.join();
}
C++虚函数在执行过程中会跳转两次(先查找对象的函数表,再次通过该函数表中的地址找到真正的执行地址),这样的话,CPU会跳转两次,而普通函数只跳转一次。
CPU每跳转一次,预取指令要作废很多,所以效率会很低。(百度)
为了管理的方便(基类指针可指向派生类对象和自动析构派生类),保留类之间的继承关系。
示例:
#include <iostream> // 包含头文件。
#include <functional>
using namespace std;struct Hero { // 英雄基类//virtual void show() { cout << "英雄释放了技能。\n"; }function<void()> m_callback; // 用于绑定子类的成员函数。// 注册子类成员函数,子类成员函数没有参数。template<typename Fn, typename ...Args>void callback(Fn&& fn, Args&&...args) {m_callback = bind(forward<Fn>(fn), forward<Args>(args)...);}void show() { m_callback(); } // 调用子类的成员函数。
};struct XS :public Hero { // 西施派生类void show() { cout << "西施释放了技能。\n"; }
};struct HX :public Hero { // 韩信派生类void show() { cout << "韩信释放了技能。\n"; }
};int main()
{// 根据用户选择的英雄,施展技能。int id = 0; // 英雄的id。cout << "请输入英雄(1-西施;2-韩信。):";cin >> id;// 创建基类指针,将指向派生类对象,用基类指针调用派生类的成员函数。Hero* ptr = nullptr;if (id == 1) { // 1-西施ptr = new XS;ptr->callback(&XS::show, static_cast<XS*>(ptr)); // 注册子类成员函数。}else if (id == 2) { // 2-韩信ptr = new HX;ptr->callback(&HX::show, static_cast<HX*>(ptr)); // 注册子类成员函数。}if (ptr != nullptr) {ptr->show(); // 调用子类的成员函数。delete ptr; // 释放派生类对象。}
}
相关文章:
包装器function
std::function模板类是一个通用的可调用对象的包装器,用简单的、统一的方式处理可调用对象。 template<class _Fty> class function…… _Fty是可调用对象的类型,格式:返回类型(参数列表)。 包含头文件:#include <functi…...

Django Rest_Framework(三)
文章目录 1. 认证Authentication2. 权限Permissions使用提供的权限举例自定义权限 3. 限流Throttling基本使用可选限流类 4. 过滤Filtering5. 排序Ordering6. 分页Pagination可选分页器 7. 异常处理 ExceptionsREST framework定义的异常 8. 自动生成接口文档coreapi安装依赖设置…...

总结 IO、存储、硬盘、文件系统相关常识
目录 一、IO是什么? 二、存储 三、硬盘 四、文件系统 4.1 文件目录和组织方式 4.2 文化路径 4.3 文件类型 4.4 文件系统操作 一、IO是什么? IO是英文Input/Output的缩写,指输入/输出。在计算机科学中,IO通常指计算机与外部设备或…...
JavaScript、深入浅出Node.js前端技能汇总
JavaScript 前端技能汇总 Frontend Knowledge Structure 深入浅出Node.js 书籍pdf 《深入浅出Node.js》的相关代码 Javascript&jQuery教程 pdf html & css教程 pdf 高性能JavaScript_中英双语版 pdf 跳坑之js调用另一个js文件中函数 方法1; 在html文件中加入两…...
use gnustep objective-c
first app #import <Foundation/Foundation.h>int main(int argc, const char * argv[]) {NSAutoreleasePool *pool [NSAutoreleasePool new];NSLog("first start");[pool drain];return 0; }tech 专注于概念,而不是迷失在语言技术细节中编程语言…...

8.15锁的优化
1.锁升级(锁膨胀) 无锁 -> 偏向锁 -> 轻量级锁 -> 重量级锁 偏向锁:不是真的加锁,而是做了一个标记,如果有别的线程来竞争才会真的加锁,如果没有别的线程竞争就不会加锁. 轻量级锁:一个线程占领锁资源后,另一个线程通过自旋的方式反复确认锁是否被是否(这个过程比较…...

单片机复位电路分析
来分析一下这个电路: 首先这里面有电容,所以是一个动态电路。哈哈哈 假设左上角的电压源是5V的代号为VOLT。 可以知道电容capacitor C1左边的电压也是5V,电容中间隔着一个绝缘体,所以不导电, 这个时候电流无法通过…...

公文写作技巧:“三面镜子”写作提纲60例
写作技巧:“三面镜子”写作提纲60例 1. 用好“三面镜子” 推深做实警示教育 勤用“反光镜”以案为鉴。 善用“显微镜”以案明纪。 巧用“聚光镜”以案促改。 2. 年轻干部要用好“三面镜子” 用好“反光镜”,照亮基层中的“暗点” 用好“显微镜”&am…...
useEffect中的函数会执行2次原因
一、useEffect介绍 useEffect是React18的新特性,表示React的生命周期Hooks组件。等价于Claas组件的componentDidMount、componentDidUpdate,useEffect的返回函数等价于componentWillUnmount。(组件卸载、重新挂载都会触发这个函数,…...

更新k8s环境支付系统支付证书
目录 一、背景 二、更新支付系统银行证书 三、备份旧的secret信息 四、更新支付应用的证书信息 五、重启支付系统的应用 六、验证应用实例挂载的秘钥已更新 一、背景 支付系统是基于k8s容器化部署的微服务,支付系统使用的支付证书以及和银行有关的证书都是保存…...
C#的yield
在 C# 中,yield 关键字用于定义迭代器方法(Iterator Methods),并使其返回一个可枚举的序列。通过使用 yield 关键字,可以简化迭代器的实现,使其更加直观和易于理解。 使用 yield 关键字定义的方法被称为迭…...

外卖多门店小程序开源版开发
外卖多门店小程序开源版开发 外卖多门店小程序开源版的开发可以按照以下步骤进行: 确定需求:明确外卖多门店小程序的功能和特点,包括用户注册登录、浏览菜单、下单支付、订单管理等。技术选型:选择适合开发小程序的技术框架&…...
打印图案、
描述 请编写一个程序,打印下面的图案: 输入 无 输出 打印上述图案 输入样例 1 无 输出样例 1 * * * * * * * * * * * * * * * * * * * * * * * * * 代码一(如下):直接输出 #include <iostream> usin…...

# Windows 环境下载 Android 12源码
前言 Android 官网(该方式不适合 Windows 平台):https://source.android.com/source/downloading.html (备注自 2021 年 6 月 22 日起,安卓操作系统不再支持在 Windows 或 MacOS 上进行构建,如果要编译源码推荐先安装…...
【运维面试】Docker技术面试题总结
【运维面试】Docker技术面试题总结 一、Docker的基础概念1.1 什么是Docker?它可以为我们提供哪些便利?1.2 Docker的优点是什么?1.3 Docker的镜像是什么?1.4 Docker的数据卷是什么?1.5 Docker Compose是什么?1.6 Docker Swarm是什么?1.7 Docker Hub是什么?有哪些用途?1…...

CNN成长路:从AlexNet到EfficientNet(01)
一、说明 在 10年的深度学习中,进步是多么迅速!早在 2012 年,Alexnet 在 ImageNet 上的准确率就达到了 63.3% 的 Top-1。现在,我们超过90%的EfficientNet架构和师生训练(teacher-student)。 如果我们在 Ima…...

使用IDEA操作Mysql数据库
idea中自带了关于数据库的连接 首先要确保你的MySQL正在运行中 打开idea找到database( view —> Tool Windows —> database),大家也可以定个快捷键,方便以后日常操作 就是这个样子,然后点加号 然后就可以编写执…...

ChatGPT下架官方检测工具,承认无法鉴别AI内容
去年底,OpenAI 推出的 ChatGPT ,带来了生成式人工智能涌现的热潮。它不仅能够协助完成撰写邮件、视频脚本、文案、翻译、代码等任务,还能通过学习和理解人类的语言来进行对话,并根据聊天的上下文进行互动。 但随之而来的争议也让人…...
Java通过实例调用getClass()方法、类名.class操作、通过运行时类获取其它信息
说明 Java Object类的getClass()函数,是通过对象调用的,是一个实例方法,该方法返回当前对象的运行时类。 通过类名.class可以获得和通过实例调用getClass()函数一样的信息。 获得运行时类以后,可以进一步获取其它信息。 代码示例…...

UE5+Paperzd问题
TopDown的2D游戏,遇到两个问题,第一问题是游戏一开始就会从tilemap上掉下去。第二个问题是没法和图层2上的物体做碰撞。 一、碰撞问题 1、创建的TileSet后,左侧选中一个tile后,一定要点击上边的Add Box,否则创建出来的…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
Java 语言特性(面试系列1)
一、面向对象编程 1. 封装(Encapsulation) 定义:将数据(属性)和操作数据的方法绑定在一起,通过访问控制符(private、protected、public)隐藏内部实现细节。示例: public …...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...