【深度学习】Transformer,Self-Attention,Multi-Head Attention
必读文章: https://blog.csdn.net/qq_37541097/article/details/117691873
论文名:Attention Is All You Need
文章目录
- 1、Self-Attention 自注意力机制
- 2、Multi-Head Attention
1、Self-Attention 自注意力机制
Query(Q)表示当前时间步的输入信息,它与Key(K)进行点积操作,用于计算注意力权重。
Key(K)表示序列中所有时间步的信息,与Query(Q)进行点积操作,用于计算注意力权重。
Value(V)包含了序列中每个时间步的隐藏状态或特征表示,根据注意力权重对其进行加权求和,得到最终的上下文向量。
注意力机制计算过程:
-
计算注意力分数(Attention Scores):
注意力分数表示查询Q与键K之间的相关性,计算公式为:
A t t e n t i o n S c o r e ( Q , K ) = Q ⋅ K ⊤ d k Attention Score(Q, K) = \frac{Q \cdot K^\top}{\sqrt{d_k}} AttentionScore(Q,K)=dkQ⋅K⊤
其中,(d_k) 是查询和键的维度。
-
计算注意力权重(Attention Weights):
通过对注意力分数应用softmax函数,将分数转换为注意力权重,使它们归一化并总和为1:
A t t e n t i o n W e i g h t ( Q , K ) = softmax ( A t t e n t i o n S c o r e ( Q , K ) ) Attention Weight(Q, K) = \text{softmax}(Attention Score(Q, K)) AttentionWeight(Q,K)=softmax(AttentionScore(Q,K))
-
计算加权值(Weighted Values):
使用注意力权重对值V进行加权,得到加权值,计算公式如下:
W e i g h t e d V a l u e s ( Q , K , V ) = Attention Weight ( Q , K ) ⋅ V Weighted Values(Q, K, V) = \text{Attention Weight}(Q, K) \cdot V WeightedValues(Q,K,V)=Attention Weight(Q,K)⋅V
在Transformer的编码器和解码器中,Q、K、V的定义稍有不同:
在编码器(Encoder)中:
- 查询(Q):来自上一层编码器的输出。
- 键(K):来自上一层编码器的输出。
- 值(V):来自上一层编码器的输出。
在解码器(Decoder)中,与编码器不同的是,还会使用编码器的输出作为额外的键(K)和值(V):
- 查询(Q):来自上一层解码器的输出。
- 键(K):来自编码器的输出。
- 值(V):来自编码器的输出。
2、Multi-Head Attention
Multi-Head Attention 是 Transformer 模型中的一种注意力机制,它扩展了普通的自注意力机制(Self-Attention)以捕获更丰富的上下文信息。
在 Multi-Head Attention 中,通过使用多组独立的注意力头(attention heads),可以从不同的表示子空间中学习到更多的关系。每个注意力头都有自己对应的 Q、K、V 矩阵,通过独立的线性映射将输入进行转换得到。然后对每个注意力头进行注意力计算,并将它们的输出进行拼接,最后再经过一个线性映射得到最终的输出。
具体而言,Multi-Head Attention 的计算过程如下:
使用多个注意力头可以让模型同时关注不同位置和表示子空间的信息,从而提升模型的表达能力和泛化性能。
相关文章:

【深度学习】Transformer,Self-Attention,Multi-Head Attention
必读文章: https://blog.csdn.net/qq_37541097/article/details/117691873 论文名:Attention Is All You Need 文章目录 1、Self-Attention 自注意力机制2、Multi-Head Attention 1、Self-Attention 自注意力机制 Query(Q)表示当…...

CADintosh X for mac CAD绘图软件2D CAD 程序 兼容 M1
CADintosh X for Mac是一个功能强大的2D CAD绘图程序,专为Mac用户设计。它由Lemke Software开发,提供了一套丰富的工具和功能,使用户能够轻松创建高质量的技术图纸,平面图和设计。 CADintosh X for Mac具有直观的用户界面&#x…...

【读书笔记】《厌女》- [日]上野千鹤子 - 2010年出版
不停的阅读,然后形成自己的知识体系。 2023.08. 读 《厌女》- [日]上野千鹤子 - 2010年出版 - 豆瓣读书 文章目录 2023年中文版作者序2015年中文版作者序第一章 喜欢女人的男人的厌女症 2023年中文版作者序 ‘厌女症’的现象本来如‘房间里的大象’,因为…...
Android 从其他xml文件中获取View组件数据
问题 Android Studio 我想在 trace.java 从setting.java绑定的页面activity_setting.xml中 的editview中获取数据 解决方案 仅适用于 在同一应用的不同组件之间共享数据 在 SettingActivity.java 中,当用户准备离开当前活动时,可以将 EditText 中的数…...

java 数组的使用
数组 基本介绍 数组可以存放多个同一类型的数据,数组也是一种数据类型,是引用类型。 即:数组就是一组数据。 数组的使用 1、数组的定义 方法一 -> 单独声明 数据类型[] 数组名 new 数据类型[大小] 说明:int[] a new int…...

Jmeter(一) - 从入门到精通 - 环境搭建(详解教程)
1.JMeter 介绍 Apache JMeter是100%纯JAVA桌面应用程序,被设计为用于测试客户端/服务端结构的软件(例如web应用程序)。它可以用来测试静态和动态资源的性能,例如:静态文件,Java Servlet,CGI Scripts,Java Object,数据库和FTP服务器…...
外贸企业选择CRM的三大特点
外贸营销管理CRM云平台可以帮助外贸企业实现更高质量的营销管理和客户管理。无论是销售、市场营销或客户服务团队的成员,CRM都可以帮助企业更好地理解客户需求,并提供更好的服务。 1.便捷轻量级 云平台的一大优势是用户可以随时随地访问数据࿰…...
软件测试与游戏测试的区别
软件测试和游戏测试是两种不同领域的测试活动,它们之间存在一些区别,包括以下几个方面: 1. 测试目标 软件测试主要是验证和确认软件功能是否符合预期,通常关注软件的正确性、稳定性和兼容性等方面;而游戏测试则更关注游…...
Programming Abstractions in C阅读笔记:p72-p75
《Programming Abstractions In C》阅读P72-p75,每次阅读其实都有很多内容需要总结,这里摘抄其中一部分。 一、技术总结 1.字符串数组 学习《Programming Abstractions in C》第75页的时候,遇到一段代码: static string bigCitie…...
bash测试test详解
bash测试test详解 概述 任何相对完整的计算机语言都能够测试某个条件,然后根据测试的结果采取不同的动作。对于测试条件, Bash使用test命令、各种方括号和圆括号、if/then结构等来测试条件。 7.1. Test Constructs 一个if/then语句结构测试一个或多个命…...
你来问我来答,ChatGPT对话软件测试!主题互动
你来问我来答,ChatGPT对话软件测试! 大家好,我是聪明而有趣的ChatGPT。作为IT专家,我将竭尽全力为你解答技术问题,并提供适合各个级别人群理解的解决方案。无论你是初学者还是专业人士,我都会用智能、简单…...

无人机巢的作用及应用领域解析
无人机巢作为无人机领域的创新设备,不仅可以实现无人机的自主充电和电池交换,还为无人机提供安全便捷的存放空间。为了帮助大家更好地了解无人机巢,本文将着重解析无人机巢的作用和应用领域。 一、无人机巢的作用 无人机巢作为无人机技术的重…...

面试热题(环形链表II)
给定一个链表,返回链表开始入环的第一个节点。 从链表的头节点开始沿着 next 指针进入环的第一个节点为环的入口节点。如果链表无环,则返回 null。 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引…...

策略模式:优雅地实现可扩展的设计
策略模式:优雅地实现可扩展的设计 摘要: 策略模式是一种常用的设计模式,它可以帮助我们实现可扩展的、灵活的代码结构。本文将通过一个计算器案例来介绍策略模式的概念、使用场景以及如何在实际项目中应用策略模式来提高代码的可维护性和可扩…...

从8个新 NFT AMM,聊聊能如何为 NFT 提供流动性
DeFi 的出现,开启了数字金融民主化的革命。其中,通过 AMM 自由创建流动性池极大地增加了 ERC-20 Token 的流动性,并为一些长尾 Token 解锁了价值的发现,因而今天在链上可以看到各种丰富的交易、借贷和杠杆等活动。 而另一方面&am…...

习题1.27
先写代码 (defn square [x] (* x x)) (defn expmod[base exp m](cond ( exp 0) 1(even? exp) (mod (square (expmod base (/ exp 2) m)) m):else (mod (* base (expmod base (- exp 1) m)) m)))(defn fermat-test[n](defn try-it [a](cond ( a n) (println "test end&qu…...

简单游戏截图_可控截取内容2
一个需求 我需要在场景中截取不同层级的截图(如只截模型或只截UI或只截外部相加看到的画面 或全都截或和Shader配合呈现人眼夜视仪热成像的画面切换) 将截图排到列表中,在场景UI中展示出来 如何做 相机要能够看到不同的画面 将当前帧画面存储下来 将存储的画面展示出…...

跨域+四种解决方法
文章目录 一、跨域二、JSONP实现跨域请求三、前端代理实现跨域请求四、后端设置请求头实现跨域请求五、Nginx代理实现跨域请求5.1 安装Nginx软件5.2 使用Ubuntu安装nginx 本文是在学习课程满神yyds后记录的笔记,强烈推荐读者去看此课程。 一、跨域 出于浏览器的同…...
RW-Everything的RwDrv.sys驱动调用
RW-Everything的RwDrv.sys驱动调用 一、RwDrv.sys二、示例代码三、总结 一、RwDrv.sys RW-Everything是一个硬件底层的工具,可用于物理内存、BIOS、PCI和IO端口的查看和修改,其基于驱动RwDrv.sys来实现,利用这个驱动可以实现系统的侵入。 二…...

0101docker mysql8镜像主从复制-运维-mysql
1 概述 主从复制是指将主数据库的DDL和DML操作通过二进制日志传到从库服务器,然后在从库上对这些日志重新执行(也叫重做),从而使得从库和主库的数据保持同步。 Mysql支持一台主库同时向多台从库进行复制,从库同时可以…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...

python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...

OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)
安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...