opencv 31-图像平滑处理-方框滤波cv2.boxFilter()
方框滤波(Box Filtering)是一种简单的图像平滑处理方法,它主要用于去除图像中的噪声和减少细节,同时保持图像的整体亮度分布。
方框滤波的原理很简单:对于图像中的每个像素,将其周围的一个固定大小的邻域内的像素值取平均,然后将这个平均值赋值给当前像素。这个邻域通常是一个正方形,称为方框或窗口。方框滤波相当于用一个均值滤波器对图像进行滤波。
与均值滤波的不同在于,方框滤波不会计算像素均值。
在均值滤波中,滤波结果的像素值是任意一个点的邻域平均值,等于各邻域像素值之和除以邻域面积。
而在方框滤波中,可以自由选择是否对均值滤波的结果进行归一化,即可以自由选择滤波结果是邻域像素值之和的平均值,还是邻域像素值之和。
我们以 5×5 的邻域为例,在进行方框滤波时,如果计算的是邻域像素值的均值,则滤波关系如图 7-15 所示。

仍然以 5×5 的邻域为例,在进行方框滤波时,如果计算的是邻域像素值之和,则滤波关系
如图 7-16 所示。

根据上述关系,如果计算的是邻域像素值的均值,则使用的卷积核为:

如果计算的是邻域像素值之和,则使用的卷积核为:

在 OpenCV 中,实现方框滤波的函数是 cv2.boxFilter(),其语法格式为:
dst = cv2.boxFilter( src, ddepth, ksize, anchor, normalize, borderType
)
式中:
dst 是返回值,表示进行方框滤波后得到的处理结果。
src 是需要处理的图像,即原始图像。它能够有任意数量的通道,并能对各个通道独立处理。图像深度应该是 CV_8U、CV_16U、CV_16S、CV_32F 或者 CV_64F 中的一种。
ddepth 是处理结果图像的图像深度,一般使用-1 表示与原始图像使用相同的图像深度。
ksize 是滤波核的大小。滤波核大小是指在滤波处理过程中所选择的邻域图像的高度和宽度。
例如,滤波核的值可以为(3,3),表示以 3×3 大小的邻域均值作为图像均值滤波处理的结果,如下式所示。

anchor 是锚点,其默认值是(-1, -1),表示当前计算均值的点位于核的中心点位置。
该值使用默认值即可,在特殊情况下可以指定不同的点作为锚点。
normalize 表示在滤波时是否进行归一化(这里指将计算结果规范化为当前像素值范围内的值)处理,该参数是一个逻辑值,可能为真(值为 1)或假(值为 0)。
当参数 normalize=1 时,表示要进行归一化处理,要用邻域像素值的和除以面积。
当参数 normalize=0 时,表示不需要进行归一化处理,直接使用邻域像素值的和。
通常情况下,针对方框滤波,卷积核可以表示为:

上述对应关系为:

例如,针对 5×5 邻域,当参数 normalize=1 时,要进行归一化处理,此时计算的就是均值滤波。
这种情况下,函数 cv2.boxFilter()和函数 cv2.blur()的作用是一样的。
此时,对应的卷积核为:

同样针对 5×5 邻域,当参数 normalize=0 时,不进行归一化处理,此时滤波计算的是邻域像素值之和,使用的卷积核是:

当 normalize=0 时,因为不进行归一化处理,因此滤波得到的值很可能超过当前像素值范围的最大值,从而被截断为最大值。
这样,就会得到一幅纯白色的图像。
borderType 是边界样式,该值决定了以何种方式处理边界。
通常情况下,在使用方框滤波函数时,对于参数 anchor、normalize 和 borderType,直接采
用其默认值即可。因此,函数 cv2.boxFilter()的常用形式为:
dst = cv2.boxFilter( src, ddepth, ksize )
实验1: 针对噪声图像,对其进行方框滤波,显示滤波结果
代码如下:
import cv2
o=cv2.imread("lenaNoise.png")
r=cv2.boxFilter(o,-1,(5,5))
cv2.imshow("original",o)
cv2.imshow("result",r)
cv2.waitKey()
cv2.destroyAllWindows()
运行结果:
在本例中,方框滤波函数对 normalize 参数使用了默认值。在默认情况下,该值为 1,表示要进行归一化处理。也就是说,本例中使用的是 normalize 为默认值 True 的 cv2.boxFilter()函数,
此时它和函数 cv2.blur()的滤波结果是完全相同的。如图 所示,左图是原始图像,右图是方框滤波结果图像

实验2:针对噪声图像,在方框滤波函数 cv2.boxFilter()内将参数 normalize 的值设置为 0,显示滤波处理结果。
代码如下:
import cv2
o=cv2.imread("lenaNoise.png")
r=cv2.boxFilter(o,-1,(5,5),normalize=0)
cv2.imshow("original",o)
cv2.imshow("result",r)
cv2.waitKey()
cv2.destroyAllWindows()
在本例中,没有对图像进行归一化处理。在进行滤波时,计算的是 5×5 邻域的像素值之和,图像的像素值基本都会超过当前像素值的最大值 255。因此,最后得到的图像接近纯白色,部分点处有颜色。部分点有颜色是因为这些点周边邻域的像素值均较小,邻域像素值在相加后仍然小于 255。
此时的图像滤波结果如图所示,左图是原始图像,右图是方框滤波后得到的处理结果

实验3:针对噪声图像,使用方框滤波函数 cv2.boxFilter()去噪,将参数 normalize 的值设置为 0,将卷积核的大小设置为 2×2,显示滤波结果
代码如下:
import cv2
o=cv2.imread("lenaNoise.png")
r=cv2.boxFilter(o,-1,(2,2),normalize=0)
cv2.imshow("original",o)
cv2.imshow("result",r)
cv2.waitKey()
cv2.destroyAllWindows()
在本例中,卷积核大小为 2×2,参数 normalize=0。因此,本例中方框滤波计算的是 2×2邻域的像素值之和,四个像素值的和不一定大于 255,因此在计算结果图像中有部分像素点不是白色。如图 所示,左图是原始图像,右图是方框滤波处理结果。

相关文章:
opencv 31-图像平滑处理-方框滤波cv2.boxFilter()
方框滤波(Box Filtering)是一种简单的图像平滑处理方法,它主要用于去除图像中的噪声和减少细节,同时保持图像的整体亮度分布。 方框滤波的原理很简单:对于图像中的每个像素,将其周围的一个固定大小的邻域内…...
Kubernetes关于cpu资源分配的设计
kubernetes资源 在K8s中定义Pod中运行容器有两个维度的限制: 资源需求(Requests):即运行Pod的节点必须满足运行Pod的最基本需求才能运行Pod。如 Pod运行至少需要2G内存,1核CPU。(软限制)资源限额(Limits):即运行Pod期间,可能内存使用量会增加,那最多能使用多少内存,这…...
Flink读取mysql数据库(java)
代码如下: package com.weilanaoli.ruge.vlink.flink;import com.ververica.cdc.connectors.mysql.source.MySqlSource; import com.ververica.cdc.connectors.mysql.table.StartupOptions; import com.ververica.cdc.debezium.JsonDebeziumDeserializationSchema; import org…...
小程序学习(五):WXSS模板语法
1.什么是WXSS WXSS是一套样式语言,用于美化WXML的组件样式,类似于网页开发中的CSS 2.WXSS和CSS的关系 WXSS模板样式-rpx 3.什么是rpx尺寸单位 4.rpx的实现原理 5.rpx与px之间的单位换算* WXSS模板样式-样式导入 6.什么是样式导入 使用WXSS提供的import语法,可以导入外联的样式…...
注解 @JsonFormat 与 @DateTimeFormat 的使用
文章目录 JsonFormat (双端互传)DateTimeFormat (前端传后端日期格式转化)情况一 前端是时间组件 <el-date-picker 或其他情况二 前端未设置组件 JsonFormat (双端互传) com.fasterxml.jackson.annotation.JsonFormat; 将字符串的时间转换成Date类型…...
Python实现决策树算法:完整源码逐行解析
决策树是一种常用的机器学习算法,它可以用来解决分类和回归问题。决策树的优点是易于理解和解释,可以处理数值和类别数据,可以处理缺失值和异常值,可以进行特征选择和剪枝等操作。决策树的缺点是容易过拟合,对噪声和不…...
Linux文本三剑客---grep、sed、awk
目录标题 1、grep1.1 命令格式1.2命令功能1.3命令参数1.4grep实战演练 2、sed2.1 认识sed2.2命令格式2.3常用选项options2.4地址定界2.5 编辑命令command2.6用法演示2.6.1常用选项options演示2.6.2地址界定演示2.6.3编辑命令command演示 3、awk3.1认识awk3.2常用命令选项3.3awk…...
局域网VoIP网络电话测试
0. 环境 ubuntu18或者ubuntu22 - SIP服务器 win10 - SIP客户端1 ubuntu18 - SIP客户端2 1. SIP服务器搭建asterisk 1.0 环境 虚拟机ubuntu18 或者ubuntu22 1.1 直接安装 sudo apt-get install asterisk 1.2 配置用户信息 分为两个部分,第一部分是修改genera…...
el-table 去掉边框(修改颜色)
原始: 去掉表格的border属性,每一行下面还会有一条线,并且不能再拖拽表头 为了满足在隐藏表格边框的情况下还能拖动表头,修改相关css即可,如下代码 <style lang"less"> .table {//避免单元格之间出现白…...
redis与MongoDB的区别
1.Redis与MongoDB的概念 1.1 MongoDB MongoDB 是由C语言编写的,是一个基于分布式文件存储的开源数据库系统。 在高负载的情况下,添加更多的节点,可以保证服务器性能。 MongoDB 旨在为WEB应用提供可扩展的高性能数据存储解决方案。 MongoDB …...
CSS设置高度
要设置 article.content 的恰当高度,您可以使用 CSS 来控制元素的外观。有几种方法可以设置元素的高度,具体取决于你的需求和布局。 以下是几种常见的方法: 1. 固定高度:你可以直接为 article.content 设置一个固定的高度值&…...
开源免费用|Apache Doris 2.0 推出跨集群数据复制功能
随着企业业务的发展,系统架构趋于复杂、数据规模不断增大,数据分布存储在不同的地域、数据中心或云平台上的现象越发普遍,如何保证数据的可靠性和在线服务的连续性成为人们关注的重点。在此基础上,跨集群复制(Cross-Cl…...
【docker】docker-compose服务编排
目录 一、服务编排概念二、docker compose2.1 定义2.2 使用步骤2.3 docker-compose安装2.4 docker-compose卸载 三、编排示例 一、服务编排概念 1.微服务架构的应用系统中一般包含若干个微服务,每个微服务一般都会部署多个实例,如果每个微服务都要手动启…...
EdgeBox_tx1_A200 PyTorch v1.9.0 环境部署
大家好,我是虎哥,今天远程帮助几个小伙伴在A200 控制器上安装PyTorch v1.9.0 torchvision v0.10.0,中间也是经历了很多波折,当然,大部分是网络问题和版本适配问题,所以完事后,将自己完整可用的过…...
【雕爷学编程】MicroPython动手做(33)——物联网之天气预报
天气(自然现象) 是指某一个地区距离地表较近的大气层在短时间内的具体状态。而天气现象则是指发生在大气中的各种自然现象,即某瞬时内大气中各种气象要素(如气温、气压、湿度、风、云、雾、雨、闪、雪、霜、雷、雹、霾等ÿ…...
分库分表之基于Shardingjdbc+docker+mysql主从架构实现读写分离 (三)
本篇主要说明: 1. 因为这个mysql版本是8.0,所以当其中一台mysql节点挂掉之后,主从同步,甚至双向数据同步都失效了,所以本篇主要记录下当其中的节点挂掉之后如何再次生效。另外推荐大家使用mysql5.7的版本,这…...
探秘企业DevOps一体化平台建设终极形态丨IDCF
笔者从事为企业提供研发效能改进解决方案相关工作十几年,为国内上百家企业提供过DevOps咨询及解决方案落地解决方案,涉及行业包括:金融、通信、制造、互联网、快销等多种行业。 DevOps的核心是研发效能改进,效能的提升离不开强大…...
百度智能创做AI平台
家人们好,在数字化时代,人工智能正引领着一场前所未有的创新浪潮。今天,我们将为大家介绍百度智能创做AI平台,这个为创意赋能、助力创作者的强大工具。无论你是创意工作者、内容创作者,还是想要释放内心创造力的个人&a…...
Python 开发工具 Pycharm —— 使用技巧Lv.1
Basic code completion Ctrl空格 is available in the search field when you search for text in the current file CtrlF, so there is no need to type the entire string 基本代码完成Ctrl 空格可在搜索领域当你搜索文本在当前文件Ctrl F,所以没有必要整个字符串类型 To m…...
zookeeper --- 高级篇
一、zookeeper 事件监听机制 1.1、watcher概念 zookeeper提供了数据的发布/订阅功能,多个订阅者可同时监听某一特定主题对象,当该主题对象的自身状态发生变化时(例如节点内容改变、节点下的子节点列表改变等),会实时、主动通知所有订阅者 …...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
