24数据结构-图的基本概念与存储结构
目录
- 第六章 图
- 6.1 图的基本概念
- 知识回顾
- 6.2 图的储存结构(邻接矩阵法)
- 1. 数组表示法
- (1) 有向图,无向图的邻接矩阵
- 2. 定义邻接矩阵的结构
- 3. 定义图的结构
- 4. 构造图G
- 5. 特点
第六章 图
6.1 图的基本概念
图是一种非线性结构
图的特点:
- 顶点之间的关系是任意的
- 图中任意两个顶点之间都可能相关
- 顶点的前驱和后继个数无限制
- 定义:图是一种数据元素间存在多对多关系的数据结构加上一组基本操作构成的抽象数据类型。
- 定义:图G由顶点集V和边集E组成,记为G=(V,E),其中V(G)表示图G中顶点的有限非空集;E(G)表示图G中顶点之间的关系(边)集合。若V={V1,V2,……Vn},则用|V|表示图G中顶点的个数,也称图G的阶,E={(u,v)|u∈V,v∈V},用|E|表示图G中边的条数。
- 注意:线性表可以是空表,树可以是空树,但图不可以为空,即V一定是非空集。
- 弧头和弧尾
<x,y>表示从顶点到顶点y的一条弧,并称x为弧尾或起始点,称y为弧头或终端点
- 无向图,有向图:有向图<u,v>,其中u表示弧尾,v表示弧头。
- 简单图:简单图:①不存在重复边,② 不存在顶点到自身的边。
- 多重图:图G中某两个结点之间的边数多于一条,又允许顶点通过同一条边和自己关联,则G为多重图。
- 度,入度,出度:① 无向图:在具有n个顶点,e条边的无向图中,全部顶点的度的和等于边数的2倍(一条边连两个顶点,所以一条边两个度)。②有向图:度之和入度+出度(一条边一个出度一个入度),在具有n个顶点,e条边的有向图中,入度=出度=e。
- 路径,简单路径,路径长度:① 在路径序列中,顶点不重复出现的路径称为简单路径。②路径长度:路径上边的数目(简单就意味着顶点不重复)。
- 回路,简单回路:除第一个顶点和最后一个顶点外,其余顶点不重复出现的回路称为简单回路。
- 点到点到距离:从顶点u出发到顶点v的最短路径若存在,则此路径的长度称为u到v的距离。若u到v根本不存在路径,则记该距离为无穷(∞)。
- 连通图,强连通图:①若图G中任意两个顶点都是连通的,则称图G为连通图(无向图中的连通就是两个顶点之间路径存在;有向图中的强连通是两个顶点之间存在往返的路径,就是w到v和v到w都有路径,强连通是有向图独有的概念),否则称为非连通图。对于n个顶点的无向图G,若G是连通图,则至少有n-1条边(就是把每个顶点都连线一个顶点,就存在路径了),若G是非连通图,则最多可能有 C n − 1 2 C_{n-1}^{2} Cn−12,(就是除去一个顶点,其他顶点两两相连,只要不连接最后一个顶点,这个图就是不连通的最极端情况)。②若图中任何一项顶点都是强连通的,则称为图为强连通图。对于n个顶点的有向图G,若G是强连通图,则最少为n条边(形成回路)。
- 连通的补充图解:
- 连通的最少边数:
- 不连通的最多边数:
- 强连通的最少边数
-
子图(不用包含所有顶点)、生成子图:若包含所有顶点的子图,就称为生成子图。并不是任意几个点,任意几条边都能构成子图(例如不构成图的情况)。
-
连通分量:无向图中极大连通子图(子图必须连通,且包含尽可能多的顶点和边)称为连通分量。
-
强连通分量:有向图中有极大强连通子图(子图必须强连通,同时保留尽可能多的边)称为有向图的强连通分量。
-
生成树:连通图的生成树是包含图中全部顶点的一个极小连通子图(边尽可能的小,但要保持连通)若图中顶点数是n,则它的生成树含有n-1条边,对于生成树而言,若砍去一条边,则会变成非连通图,若加上一条边则会形成一个回路(环)。
-
生成森林:在非连通图中,连通分量的生成树构成了非连通图的生成森林。
-
边的权,带权图(网)
-
无向完全图:无向图中任意两个顶点之间都存在边。
-
有向完全图:有向图中任意两个顶点之间都存在方向相反的两条弧。
-
稀疏图,稠密图:这二者是相对的
-
树:不存在回路,且连通的无向图,n个顶点的树,必有n-1条边。
-
有向树:一个顶点的入度为0,其余顶点的入度均有1的有向图,称为有向树。
n个顶点的图,若|E|>n-1,则一定有回路。
知识回顾
6.2 图的储存结构(邻接矩阵法)
1. 数组表示法
(1) 有向图,无向图的邻接矩阵
① 对于无向图,顶点vi的度是邻接矩阵中第i行(或第i列)的元素之和, TD(vi)= ∑ a[i][j]。
② 对于有向图,顶点VI的出度OD(vi)是邻接矩阵中第i行的元素之和,顶点vi的出度ID(vi)是邻接矩阵中第j列)的元素之和。
③ 邻接矩阵法求顶点的度。入度。出度的时间复杂度为O(|V|)。
2. 定义邻接矩阵的结构
#define INFINITY INT_MAX
#define MAX_VERTEXT_NUM 20
typedef enum{DG,DN,AG,AN}GraphKind;
typedef struct ArcCell{VRType adj;//对无向图,用0,1表示是否相邻,对于带权图,为权值InfoType *info;//该弧相关信息的指针}RrcCell,AdjMatrix[MAX_VERTEXT_NUM][MAX_VERTEXT_NUM];//邻接矩阵
3. 定义图的结构
(1)代码:
//定义图的结构
typedef struct {VertextType exs[MAX_VERTEXT_NUM]; //顶点AdjMatrix arcs[MAX_VERTEXT_NUM][MAX_VERTEXT_NUM]; //边的邻接矩阵int vexnum,arcnum; //个数GraphKind kind;//有向图?无向图?
}MGraph;
4. 构造图G
status CreateGraph(MGraph &G)
{scanf(&G.kind){case DG:return CreateDG(G);case DN:return CreateDN(G);case UDG:return CreateUDG(G);case UDN:return CreateDGN(G);default:return ERROR;}
}
//用无向图为例status CreateUDN(MGraph &G)
{scanf(&G.arcnum,&G.vexnum,&IncInfo);//输入点数和边数//给顶点进行数字化编号for(i=0;i<G.vexnum;i++){ scanf(&G.exs[i]);//定义顶点数组(如果顶点本身就是1~n的数字无需这一步)}//初始化邻接矩阵for(i=0;i<G.vexnum;i++){for(j=0;j<G.vexnum;j++){G.arcs[i][j]={ININITY,NULL};}}//通过边数进行遍历for(k=0;k<G.arcnum;K++){scanf(&V1,&V2,&W);//输入邻接的连个顶点i=locatteVex(G,V1);j=locateVex(G,V2);//查找V1,V2的位置G.arcs[i][j].adj=w;//给邻接矩阵赋值if(IncInfo){INPUT(*G.arcs[i][j].info);}G.arcs[j][i]=G.arcs[i][j];//由于是无向图,对称}return ok;
}
5. 特点
优点:
- 无向图邻接矩阵是对称矩阵,同一条边表示了两次
- 顶点v的度:等于二维数组对应行(或列)中1的个数
- 判断两顶点v、u是否为邻接点:只需判二维数组对应分量是否为1
- 在图中增加、删除边:只需对二维数组对应分量赋值1或清0
- 占用存储空间只与它的顶点数有关,与边数无关;适用于边稠密的图
- 对有向图的数组表示法可做类似的讨论’‘
缺点:
- 不便于删除和增加顶点(增删边简单)
- 不便于统计边的数目,需要扫描邻接矩阵所有元素才能统计完毕,时间复杂度为O( n 2 n^2 n2 )
- 空间复杂度高,对于有向图,n个顶点需要 n 2 n^2 n2 个单元存储边,对于无向图,n(n-1)/2个单元,空间复杂度为O( n 2 n^2 n2 )
相关文章:

24数据结构-图的基本概念与存储结构
目录 第六章 图6.1 图的基本概念知识回顾 6.2 图的储存结构(邻接矩阵法)1. 数组表示法(1) 有向图,无向图的邻接矩阵 2. 定义邻接矩阵的结构3. 定义图的结构4. 构造图G5. 特点 第六章 图 6.1 图的基本概念 图是一种非线性结构 图的特点&am…...

自然语言处理学习笔记(三)————HanLP安装与使用
目录 1.HanLP安装 2.HanLP使用 (1)预下载 (2)测试 (3)命令行 (4)测试样例 3.pyhanlp可视化 4. HanLP词性表 1.HanLP安装 HanLP的 Python接口由 pyhanlp包提供,其安装…...

CS 144 Lab Five -- the network interface
CS 144 Lab Five -- the network interface TCP报文的数据传输方式地址解析协议 ARPARP攻击科普 Network Interface 具体实现测试tcp_ip_ethernet.ccTCPOverIPv4OverEthernetAdapterTCPOverIPv4OverEthernetSpongeSocket通信过程 对应课程视频: 【计算机网络】 斯坦福大学CS144…...
Mecha
一、Mecha Mecha 是一个开源的多云 Kubernetes 管理平台,旨在简化和统一在多个云提供商上运行 Kubernetes 集群的管理和操作。它是由阿里巴巴集团开发和维护的项目。 Mecha 的主要目标是提供一个统一的界面和工具,使用户能够更轻松地在不同的云提供商上…...
Apache RocketMQ之集成RocketMQ_MQTT 安装部署协议
Apache RocketMQ 安装说明 安装步骤 参考快速开始 https://rocketmq.apache.org/zh/docs/quickStart/01quickstart 安装可视化rocketmq_dashboard下载地址 https://rocketmq.apache.org/zh/docs/4.x/deployment/03Dashboard/ 安装rocketmq_mqtt https://rocketmq.apache.o…...
Oracle多行数据合并为一行数据,并将列数据转为字段名
Oracle多行数据合并为一行数据 实现查询效果原数据 方式一:MAX()数据效果SQL 方式二:LISTAGG()数据效果 方式三:WM_CONCAT()数据效果 实现查询效果 原数据 FZPROJECTVALUE1电脑$16001手机$121导管$12电脑$22手机$22 方式一:MAX…...

MySQL5.7 与 MariaDB10.1 审计插件兼容性验证
这是一篇关于发现 MariaDB 审计插件导致 MySQL 发生 crash 后,展开适配验证并进行故障处理的文章。 作者:官永强 爱可生DBA 团队成员,擅长 MySQL 运维方面的技能。热爱学习新知识,亦是个爱打游戏的宅男。 本文来源:原创…...
PyTorch Lightning教程五:Debug调试
如果遇到了这样一个问题,当一次训练模型花了好几天,结果突然在验证或测试的时候崩掉了,这个时候其实是很奔溃的,主要还是由于没有提前知道哪些时候会出现什么问题,本节会引入Lightning的Debug方案 1.fast_dev_run参数 …...
末流211无科研保研经验分享
文章目录 个人背景夏令营哈工大威海西工大光电北航软院北邮计算机中科大科学岛 预推免东南软件北航计算机 写在最后心路历程寄语 个人背景 院校:末流211专业背景:计算机科学与技术排名:夏令营7 / 126,预推免3 / 126英语ÿ…...
日期选择器多选换行
<el-form-item label"日期选择"><div class"multi-date-picker"><div class"date-item"><span class"dateIcon"><el-icon><Calendar /></el-icon></span><span class"dateIt…...

NodeJS原型链污染ctfshow_nodejs
文章目录 NodeJS原型链污染&ctfshow_nodejs前言0x01.原型与原型链0x02.prototype和__proto__分别是什么?0x03.原型链继承不同对象的原型链* 0x04.原型链污染原理0x05.merge()导致原型链污染0x06.ejs模板引擎RCEejs模板引擎另一处rce 0x07.jade模板引擎RCE【ctfs…...

18. SpringBoot 如何在 POM 中引入本地 JAR 包
❤️ 个人主页:水滴技术 🌸 订阅专栏:成功解决 BUG 合集 🚀 支持水滴:点赞👍 收藏⭐ 留言💬 Spring Boot 是一种基于 Spring 框架的轻量级应用程序开发框架,它提供了快速开发应用程…...

vue2-$nextTick有什么作用?
1、$nextTick是什么? 官方定义:在下次DOM更新循环结束之后执行延迟回调。在修改数据之后立即使用这个方法,获取更新后的DOM。 解释:Vue在更新DOM时是异步执行的,当数据发生变化时,Vue将开启一个异步更新的队…...

python自动收集粘贴板
win10的粘贴板可以用“winV”查看: 每次复制都相当于入栈一个字符串,粘贴相当于获取栈顶。 但是系统自带的这个粘贴板貌似不能一键导出,所以我写了个python代码完成这个功能: import pyperclip import timetmp while True:txt…...

Vue3_语法糖—— <script setup>以及unplugin-auto-import自动引入插件
<script setup>import { ref , onMounted} from vue;let obj ref({a: 1,b: 2,}); let changeObj ()>{console.log(obj)obj.value.c 3 //ref写法}onMounted(()>{console.log(obj)})</script> 里面的代码会被编译成组件 setup() 函数的内容。 相当于 <…...
2023-08-06力扣做过了的题
链接: 剑指 Offer 30. 包含min函数的栈 题意: 如题 解: 初级算法里做过的题 优化是存储和min的差值使得只需要n的栈和一个int min 实际代码: #include<bits/stdc.h> using namespace std; class MinStack { public:…...

进程间通信之管道
文章目录 一、管道1. 匿名管道2. 命名管道 进程具有独立性,因此进程间通信的前提是两个进程能看到同一份资源 一、管道 对于进程打开的内存文件,操作系统是以引用计数的方式创建的 file 结构体,如果让两个进程与同一个 file 结构体关联&…...

f12 CSS网页调试_css样式被划了黑线怎么办
我的问题是这样的 class加上去了,但是样式不生效,此时可能是样式被其他样式覆盖了, 解决方案就是 给颜色后边添加一个!important...
vue-制作自动滚动效果
第一步:下载 可以查看官方地址chenxuan0000 npm i vue-seamless-scroll -save 第二步:引用 import vueSeamlessScroll from "vue-seamless-scroll";//注册components: {vueSeamlessScroll,}, 第三步:使用 <vue-seamless…...
[国产MCU]-BL602-开发实例-DMA数据传输
DMA数据传输 文章目录 DMA数据传输1、DMA介绍2、DMA驱动API介绍3、DMA使用示例DMA(Direct Memory Access)是一种内存存取技术,可以独立地直接读写系统内存,而不需处理器介入处理。 在同等程度的处理器负担下,DMA是一种快速的数据传送方式。 BL602的DMA控制器有4组独立专用通…...

(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...

el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...

【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...

MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...