PLL 的 verilog 实现
锁相环(PLL)是一种常用的频率、相位追踪算法,在信号解调、交流并网等领域有着广泛的应用。本文对全数字锁相环的原理进行介绍,随后给出 verilog 实现及仿真。
PLL 锁相原理
锁相环结构如下图所示,主要由鉴相器、环路滤波器、压控振荡器等构成

其中鉴相器是一个乘法器,设参考信号 u i u_i ui 、本地信号 u o u_o uo 均为正弦信号
u i ( t ) = c o s ( ω 1 t + φ 1 ) u_i(t)=cos(\omega_1 t+\varphi_1) ui(t)=cos(ω1t+φ1)
u o ( t ) = c o s ( ω 2 t + φ 2 ) u_o(t)=cos(\omega_2 t+\varphi_2) uo(t)=cos(ω2t+φ2)
根据积化和差公式, u i u_i ui 与 u o u_o uo 的乘积将包含 ω 1 + ω 2 \omega_1+\omega_2 ω1+ω2 和 ω 1 − ω 2 \omega_1-\omega_2 ω1−ω2 两个频率分量,经过 LF 低通滤波后,将仅剩两者的差频信号
u c = c o s [ ( ω 1 − ω 2 ) t + ( φ 1 − φ 2 ) ] = c o s [ 2 π ( f 1 − f 2 ) t + ( φ 1 − φ 2 ) ] \begin{aligned} u_c&=cos[(\omega_1-\omega_2)t+(\varphi_1-\varphi_2)]\\ &=cos[2\pi(f_1-f_2)t+(\varphi_1-\varphi_2)] \end{aligned} uc=cos[(ω1−ω2)t+(φ1−φ2)]=cos[2π(f1−f2)t+(φ1−φ2)]
使用 f 2 = f 0 + K 0 u c f_2=f_0+K_0 u_c f2=f0+K0uc 控制压控振荡器(数字式的一般用 DDS 技术生成)的频率,即可完成锁相。
假设输入信号相对于基准频率 f 0 f_0 f0 存在 Δ f \Delta f Δf 的频率偏差,则完成锁相后两信号将具有固定的相位偏差 Δ φ \Delta \varphi Δφ,关系如下
Δ f = K 0 c o s ( Δ φ ) \Delta f=K_0cos(\Delta \varphi) Δf=K0cos(Δφ)
当然也应当注意到这里的 Δ φ \Delta \varphi Δφ 符号无法被确定。
verilog 实现
PLL 模块主程序如下
/* * file : ADPLL.v* author : 今朝无言* lab : WHU-EIS-LMSWE* date : 2023-08-03* version : v1.0* description : 锁相环* Copyright © 2023 WHU-EIS-LMSWE, All Rights Reserved.*/
module ADPLL(
input clk,
input rst_n,input signed [15:0] A, //参考信号
input signed [15:0] B, //本地信号output signed [15:0] df //频偏
);parameter CLK_FREQ = 1_000_000; //采样频率reg signed [15:0] df = 16'd0;//-----------------------multi---------------------------------
reg signed [31:0] multi = 32'd0;always @(posedge clk) beginif(~rst_n) beginmulti <= 32'd0;endelse beginmulti <= A*B;end
end//------------------------FIR---------------------------------
wire signed [15:0] multi_filt [1:3];localparam FIR_N = 20; //FIR阶数wire [16*(FIR_N+1)-1:0] FIR_params;FIR_params_0d1 FIR_params_inst(.params (FIR_params)
);wire clk_div10;
wire clk_div100;clkdiv #(.N(10)) clkdiv10(.clk_in (clk),.clk_out (clk_div10)
);clkdiv #(.N(100)) clkdiv100(.clk_in (clk),.clk_out (clk_div100)
);//低通滤波 多级低通滤波,中间穿插下采样
FIR_filter #(.N(FIR_N + 1))
FIR_filter_inst1(.clk (clk),.rst_n (rst_n),.filter_params (FIR_params),.data_in (multi[31:16]),.data_out (multi_filt[1])
);//低通滤波
FIR_filter #(.N(FIR_N + 1))
FIR_filter_inst2(.clk (clk_div10),.rst_n (rst_n),.filter_params (FIR_params),.data_in (multi_filt[1]),.data_out (multi_filt[2])
);//低通滤波
FIR_filter #(.N(FIR_N + 1))
FIR_filter_inst3(.clk (clk_div100),.rst_n (rst_n),.filter_params (FIR_params),.data_in (multi_filt[2]),.data_out (multi_filt[3])
);//---------------------control---------------------------------
always @(posedge clk_div100) begindf <= multi_filt[3]; // df=K*multi_filt,此处省略鉴相灵敏度K,外部请自行设置合理的K值s
endendmodule
低通滤波器及其参数代码如下
/* * file : FIR_filter.v* author : 今朝无言* lab : WHU-EIS-LMSWE* date : 2023-07-03* version : v1.0* description : FIR 滤波器*/
module FIR_filter(
input clk,
input rst_n,input [16*N-1:0] filter_params,input signed [15:0] data_in,
output reg signed [15:0] data_out
);parameter N = 32; //滤波器参数个数
parameter div_N = 16; //sum结果除 2^div_N,作为 filter 的输出//FIR 滤波器参数
reg signed [15:0] b[0:N-1];integer m;
always @(*) beginfor(m=0; m<N; m=m+1) beginb[m] <= filter_params[(m << 4) +: 16];end
endreg signed [15:0] shift_reg[0:N-1];integer i;
always @(posedge clk) beginif(~rst_n) beginfor(i=N-1; i>=0; i=i-1) beginshift_reg[i] <= 16'd0;endendelse beginfor(i=N-1; i>0; i=i-1) beginshift_reg[i] <= shift_reg[i-1];endshift_reg[0] <= data_in;end
endreg signed [31:0] multi[0:N-1];integer j;
always @(*) beginfor(j=0; j<N; j=j+1) beginmulti[j] <= shift_reg[j] * b[j];//这里可以考虑使用multiplier IP核,使用LUT搭建(而这里直接乘使用的是DSP资源,一般的FPGA芯片只有几百个)end
endreg signed [47:0] sum;integer k;
always @(*) beginsum = 0;for(k=0; k<N; k=k+1) beginsum = sum + multi[k];end
endalways @(posedge clk) begindata_out <= sum[47-div_N : 32-div_N];
endendmodule
/* * file : FIR_params.v* author : 今朝无言* lab : WHU-EIS-LMSWE* date : 2023-08-04* version : v1.0* description : FIR 滤波器 lowpass N=20 fc=0.1 fs*/
module FIR_params_0d1(
output [335:0] params
);assign params[15:0] = 16'h0000;
assign params[31:16] = 16'h0057;
assign params[47:32] = 16'h0131;
assign params[63:48] = 16'h0302;
assign params[79:64] = 16'h0616;
assign params[95:80] = 16'h0A6D;
assign params[111:96] = 16'h0FA8;
assign params[127:112] = 16'h1518;
assign params[143:128] = 16'h19E1;
assign params[159:144] = 16'h1D28;
assign params[175:160] = 16'h1E53;
assign params[191:176] = 16'h1D28;
assign params[207:192] = 16'h19E1;
assign params[223:208] = 16'h1518;
assign params[239:224] = 16'h0FA8;
assign params[255:240] = 16'h0A6D;
assign params[271:256] = 16'h0616;
assign params[287:272] = 16'h0302;
assign params[303:288] = 16'h0131;
assign params[319:304] = 16'h0057;
assign params[335:320] = 16'h0000;endmodule
关于 FIR 滤波器这部分可以参考我之前的博文。
仿真
仿真测试代码如下
`timescale 100ns/1nsmodule PLL_tb();reg clk_1M = 1'b1;
always #5 beginclk_1M <= ~clk_1M;
endreg rst_n = 1'b1;//---------------------参考信号A-------------------------------
wire [15:0] A_out_tmp;
wire signed [15:0] A_out; //参考信号localparam f0 = 24'd10_000;
localparam df = -24'd9; //频率偏差DDS #(.Freq(1_000_000)
)
DDS_inst1(.clk (clk_1M),.rst_n (rst_n),.fout (f0+df),.phase0 (16'd0),.sin_out (A_out_tmp)
);assign A_out = A_out_tmp - 16'd32768;//---------------------本地信号B-------------------------------
wire [15:0] B_out_tmp;
wire signed [15:0] B_out;wire signed [23:0] df2; //控制本地信号的频偏DDS #(.Freq (1_000_000)
)
DDS_inst2(.clk (clk_1M),.rst_n (rst_n),.fout (f0+df2),.phase0 (16'd0),.sin_out (B_out_tmp)
);assign B_out = B_out_tmp - 16'd32768;//-----------------------PLL---------------------------------
wire signed [15:0] df_PLL;ADPLL #(.Freq (1_000_000)
)
PLL_inst(.clk (clk_1M),.rst_n (rst_n),.A (A_out), //参考信号.B (B_out), //本地信号.df (df_PLL) //频偏
);assign df2 = df_PLL/64;//-----------------------tb---------------------------------
initial beginrst_n <= 1'b0;#5000;rst_n <= 1'b1;#100;#1000000;$stop;
endendmodule
DDS 代码如下
/* * file : DDS.v* author : 今朝无言* Lab : WHU-EIS-LMSWE* date : 2023-05-17* version : v1.0* description : 根据给定频率输出正弦信号* Copyright © 2023 WHU-EIS-LMSWE, All Rights Reserved.*/
module DDS(
input clk,
input rst_n,input [23:0] fout, //输出正弦波的频率 1k-10M 要24位
input [15:0] phase0, //初相output [15:0] sin_out
);parameter Freq = 100_000_000; //clk频率,Hz//-----------------相位累加器-----------------------
reg [47:0] int_f_16 = 48'd0; //相位累加器,x-16定点数
wire [55:0] dphi_16; //相位步进//dphi*Freq=fout*T, T=65536
assign dphi_16 = (fout << 32)/Freq;always @(posedge clk or negedge rst_n) beginif(~rst_n) beginint_f_16 <= 48'd0;endelse beginint_f_16 <= int_f_16 + dphi_16;end
end//-----------------正弦查找表-----------------------
wire [15:0] phase;sin_gen sin_gen_inst(.clk (clk),.phase (phase), //相位.sin_out (sin_out)
);assign phase = phase0 + (int_f_16 >> 16);endmodule
相应的正弦查找表如下(该模块使用线性插值的方法,在仅少量增加资源消耗的情况下,将量化误差缩小了两个数量级;这部分也可详见我之前的博文)
/* * file : sin_gen.v* author : 今朝无言* Lab : WHU-EIS-LMSWE* date : 2023-05-17* version : v1.0* description : 根据给定相位输出正弦信号* Copyright © 2023 WHU-EIS-LMSWE, All Rights Reserved.*/
module sin_gen(
input clk,input [15:0] phase, //相位,0~65535对应[0~2pi)
output [15:0] sin_out
);//---------------------正弦查找表-------------------------
wire [7:0] addr1;
wire [7:0] addr2;
wire [15:0] sin_dat1;
wire [15:0] sin_dat2;//sin rom, 16bit, 256 depth
sin_rom sin_rom_inst1(.clka (clk),.addra (addr1),.douta (sin_dat1)
);sin_rom sin_rom_inst2(.clka (clk),.addra (addr2),.douta (sin_dat2)
);//-----------线性插值获取更精确的相位分辨率-------------------
assign addr1 = (phase>>8);
assign addr2 = (phase>>8)+1;wire [15:0] phase1;
wire [15:0] phase2;assign phase1 = addr1<<8;
assign phase2 = addr2<<8;reg [15:0] phase_d0;
reg [15:0] phase_d1; //由于rom数据2拍后才给出,因此phase需要与之同步
reg [15:0] phase1_d0;
reg [15:0] phase1_d1;always @(posedge clk) beginphase_d0 <= phase;phase_d1 <= phase_d0;phase1_d0 <= phase1;phase1_d1 <= phase1_d0;
endwire [31:0] multi;
assign multi = (sin_dat2 > sin_dat1)? (sin_dat2 - sin_dat1)*(phase_d1 - phase1_d1) : (sin_dat1 - sin_dat2)*(phase_d1 - phase1_d1);assign sin_out = (sin_dat2 > sin_dat1)? sin_dat1 + (multi >> 8) : sin_dat1 - (multi >> 8);endmodule
仿真结果如下

相关文章:
PLL 的 verilog 实现
锁相环(PLL)是一种常用的频率、相位追踪算法,在信号解调、交流并网等领域有着广泛的应用。本文对全数字锁相环的原理进行介绍,随后给出 verilog 实现及仿真。 PLL 锁相原理 锁相环结构如下图所示,主要由鉴相器、环路滤…...
【Hystrix技术指南】(1)基本使用和配置说明
这世间许多事物皆因相信而存在,所以人们亲手捏出了泥菩萨,却选择坚定的去信仰它。 分布式系统的规模和复杂度不断增加,随着而来的是对分布式系统可用性的要求越来越高。在各种高可用设计模式中,【熔断、隔离、降级、限流】是经常被…...
Oracle EBS OM客制化调用API创建销售订单非常慢(FND_FLEX_HASH死锁)
业务场景 由于Oracle EBS标准功的公司间关联交易操作涉及业务节点环节多,需要多个业务部门参考操作完成,浪费人力和花费时间。随着国内集团公司通过业务整合优化,大幅度减少间中很多环节的人为操作,如国内公司间贸易通过类似于客制化出货单申请方式,跨国公司间贸易通过类似…...
【leetcode】394. 字符串解码
题目链接:力扣 给定一个经过编码的字符串,返回它解码后的字符串。 编码规则为: k[encoded_string],表示其中方括号内部的 encoded_string 正好重复 k 次。注意 k 保证为正整数。 你可以认为输入字符串总是有效的;输入字符串中没…...
系统架构设计高级技能 · 系统质量属性与架构评估(二)【系统架构设计师】
系列文章目录 系统架构设计高级技能 软件架构概念、架构风格、ABSD、架构复用、DSSA(一)【系统架构设计师】 系统架构设计高级技能 系统质量属性与架构评估(二)【系统架构设计师】 系统架构设计高级技能 软件可靠性分析与设计…...
魅族Pandaer手机壳
Pandaer的设计真是非常好看啊!像是手机壳的花样就特别多,还分出来很多系列,我比较喜欢它的亮面设计,入手了一款iPhone的,花色叫做“失控街头”,壳内部也是亮的,看起来特别浮夸,潮里潮…...
F5洞察2023年网络威胁,助力网络安全防护
2023已经过半,关于网络安全防护的相关讨论话题热度始终居高不下。对于网络安全领域的从业者来说,应当对相关的前瞻分析有所了解。前段时间,我阅读了F5 安全运营中心工程师对威胁网络安全的预测,深受启发,故此选取了几则…...
从零构建深度学习推理框架-4 框架中的算子注册机制
今天要讲的这一注册机制用到了设计模式中的工厂模式和单例模式,所以这节课也是对两大设计模式的一个合理应用和实践。KuiperInfer的注册表是一个map数据结构,维护了一组键值对,key是对应的OpType,用来查找对应的value,…...
使用vscode+ssh免密远程Linux
使用vscodessh免密远程Linux 使用 SSH 密钥对:使用 SSH Agent:ssh-agent的使用场景 使用 SSH 密钥对: 确保你的本地机器上已经生成了 SSH 密钥对。如果没有,请使用以下命令生成密钥对: ssh-keygen -t rsa这将在 ~/.ssh…...
rust-异步学习
rust获取future中的结果 两种主要的方法使用 async: async fn 和 async 块 async 体以及其他 future 类型是惰性的:除非它们运行起来,否则它们什么都不做。 运行 Future 最常见的方法是 .await 它。 当 .await 在 Future 上调用时,它会尝试把…...
【Azure】office365邮箱测试的邮箱账号因频繁连接邮箱服务器而被限制连接 引起邮箱显示异常
azure微软office365邮箱会对频繁连接自身邮箱服务器的IP地址进行,连接邮箱服务器IP限制,也就是黑名单,释放时间不确定,但至少一天及以上。 解决办法,换一个IP,或者新注册一个office365邮箱再重试。 以下是…...
重新登录成功和登录失败处理器
<template><div class="login"><el-form ref="loginRef" :model="loginForm" :rules="loginRules" class="login-form"><h3 class="title">Java1234 Vue3 后台管理系统</h3><el…...
【Spring】(三)Spring 使用注解存储和读取 Bean对象
文章目录 前言一、使用注解储存 Bean 对象1.1 配置扫描路径1.2 类注解储存 Bean 对象1.2.1 Controller(控制器存储)1.2.2 Service(服务储存)1.2.3 Repository(仓库存储)1.2.4 Component(组件储存…...
ParallelCollectionRDD [0] isEmpty at KyuubiSparkUtil.scala:48问题解决
ParallelCollectionRDD [0] isEmpty at KyuubiSparkUtil.scala:48问题解决 这个问题出现在使用Kyubi Spark Util处理ParallelCollectionRDD的过程中,具体是在KyubiSparkUtil.scala文件的第48行调用isEmpty方法时出现的。该问题可能是由以下几个原因引起的࿱…...
---------------- 部署 Zookeeper 集群 ----------------
部署 Zookeeper 集群 1.安装前准备2.安装 Zookeeper修改配置文件在每个节点上创建数据目录和日志目录在每个节点的dataDir指定的目录下创建一个 myid 的文件配置 Zookeeper 启动脚本 //准备 3 台服务器做 Zookeeper 集群 192.168.109.1 192.168.109.2 192.168.109.3 1.安装前准…...
SpringBoot 依赖管理和自动配置---带你了解什么是版本仲裁
😀前言 本篇博文是关于SpringBoot 依赖管理和自动配置,希望能够帮助到您😊 🏠个人主页:晨犀主页 🧑个人简介:大家好,我是晨犀,希望我的文章可以帮助到大家,您…...
c语言每日一练(2)
前言: 每日一练系列,每一期都包含5道选择题,2道编程题,博主会尽可能详细地进行讲解,令初学者也能听的清晰。每日一练系列会持续更新,暑假时三天之内必有一更,到了开学之后,将看学业情…...
代码随想录第三十七天
代码随想录第三十七天 Leetcode 738. 单调递增的数字 Leetcode 738. 单调递增的数字 题目链接: 单调递增的数字 自己的思路:完全想不到!! 正确思路:大致思路是从后向前遍历,不可以从前向后,如果从前向后没有保证单调递增的顺序&…...
Linux进程间通信--ftok
在C语言中,ftok函数用于生成一个唯一的键值,该键值通常用于创建共享内存,消息队列和信号量等系统资源的标识符。 ftok函数原型入下: key_t ftok(const char *pathname, int proj_id); 参数说明: pathname:…...
Spring Boot集成Mybatis-Plus
Spring Boot集成Mybatis-Plus 1. pom.xml导包 <!--lombok--><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId></dependency><!--mysql驱动--><dependency><groupId>mysql<…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
全面解析数据库:从基础概念到前沿应用
在数字化时代,数据已成为企业和社会发展的核心资产,而数据库作为存储、管理和处理数据的关键工具,在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理,到社交网络的用户数据存储,再到金融行业的交易记录处理&a…...
