Leetcode.1139 最大的以 1 为边界的正方形
题目链接
Leetcode.1139 最大的以 1 为边界的正方形 Rating : 1744
题目描述
给你一个由若干 0 和 1 组成的二维网格 grid,请你找出边界全部由 1 组成的最大 正方形 子网格,并返回该子网格中的元素数量。
如果不存在,则返回 0。
示例 1:
输入:grid = [[1,1,1],[1,0,1],[1,1,1]]
输出:9
示例 2:
输入:grid = [[1,1,0,0]]
输出:1
提示:
- 1<=grid.length<=1001 <= grid.length <= 1001<=grid.length<=100
- 1<=grid[0].length<=1001 <= grid[0].length <= 1001<=grid[0].length<=100
grid[i][j]为 0 或 1
分析:
使用 dp 求解,我们定义 f(i,j,0)和f(i,j,1)f(i,j,0)和f(i,j,1)f(i,j,0)和f(i,j,1)分别为以点 (i,j)结尾,向左 和 向上的连续 1的个数。
在f(i,j,0)>0和f(i,j,1)>0f(i,j,0) > 0和f(i,j,1) > 0f(i,j,0)>0和f(i,j,1)>0 的情况下,我们取 d=min(f(i,j,0),f(i,j,1))d = min(f(i,j,0),f(i,j,1))d=min(f(i,j,0),f(i,j,1))。
遍历kkk (0<=k<=d)(0<=k<=d)(0<=k<=d),判断 f(i−k+1,j,0)>=k和f(i,j−k+1,1)>=kf(i-k+1,j,0) >= k 和 f(i,j-k+1,1) >= kf(i−k+1,j,0)>=k和f(i,j−k+1,1)>=k,如果条件成立,说明可以构成一个最后一点是 (i,j),边长为 k的正方形。
时间复杂度:O(m∗n∗min(m∗n))O(m*n*min(m*n))O(m∗n∗min(m∗n))
C++代码:
class Solution {
public:int largest1BorderedSquare(vector<vector<int>>& grid) {int m = grid.size(),n = grid[0].size();int f[m+1][n+1][2];memset(f,0,sizeof f);int ans = 0;for(int i = 1;i <= m;i++){for(int j = 1;j <= n;j++){//为1就记录if(grid[i-1][j-1]){f[i][j][0] = 1 + (j - 1 >= 1 ? f[i][j-1][0] : 0);f[i][j][1] = 1 + (i - 1 >= 1 ? f[i-1][j][1] : 0);}if(f[i][j][0] > 0 && f[i][j][1] > 0){int d = min(f[i][j][0],f[i][j][1]);//倒序判断能构成正方形的最大边长for(int k = d;k >= 0;k--){if(i-k+1 >= 1 && j-k+1 >= 1 && f[i-k+1][j][0] >= k && f[i][j-k+1][1] >= k){ans = max(ans,k*k);break;}}}}}return ans;}
};
Java代码:
class Solution {public int largest1BorderedSquare(int[][] grid) {int m = grid.length,n = grid[0].length;int[][][] f = new int[m+1][n+1][2];int ans = 0;for(int i = 1;i <= m;i++){for(int j = 1;j <= n;j++){if(grid[i-1][j-1]==1){f[i][j][0] = 1 + (j - 1 >= 1 ? f[i][j-1][0] : 0);f[i][j][1] = 1 + (i - 1 >= 1 ? f[i-1][j][1] : 0);}if(f[i][j][0] > 0 && f[i][j][1] > 0){int d = Math.min(f[i][j][0],f[i][j][1]);for(int k = d;k >= 0;k--){if(i-k+1 >= 1 && j-k+1 >= 1 && f[i-k+1][j][0] >= k && f[i][j-k+1][1] >= k){ans = Math.max(ans,k*k);break;}}}}}return ans;}
}
相关文章:
Leetcode.1139 最大的以 1 为边界的正方形
题目链接 Leetcode.1139 最大的以 1 为边界的正方形 Rating : 1744 题目描述 给你一个由若干 0 和 1 组成的二维网格 grid,请你找出边界全部由 1 组成的最大 正方形 子网格,并返回该子网格中的元素数量。 如果不存在,则返回 0。…...
Bing+ChatGPT 对传统搜索引擎的降维打击
早些时候申请了新版 Bing 的内测资格,终于收到了通过的邮件。 一天的体验之后,我的感受是:当新版 Bing 具备了 ChatGPT 的聊天能力之后,它的能力不论是对传统搜索引擎,还是 ChatGPT 自身,都将是降维打击。 …...
【JS】数组常用方法总结-功能、参数、返回值
数组常用方法总结-功能、参数、返回值 用简单的js示例 运行在线工具:链接: 菜鸟工具 菜鸟工具示意图: pu…...
pytest 单元测试前后置处理
文章目录方法1 setup/teardown方法2 fixture 夹具方法3 conftest.py测试用例执行前后的一些处理动作,也叫夹具。以下介绍使用前后置操作的几种方法。方法1 setup/teardown setup,每个测试用例执行前要进行的处理。 teardown,每个测试用例执行…...
汽车安全硬件扩展 AUTOSAR SHE SecureHardwareExtensions
SHE(Secure Hardware Extension)在车联网中,被应用在车端ECU中负责安全存储与安全计算。是由HIS(由Audi、BMW、Porsche、Volkswagen组成)制定的标准,中文意思“安全硬件扩展”,是对任何给定微控…...
2023年美国大学生数学建模C题:预测Wordle结果建模详解+模型代码
目录 前言 一、题目理解 背景 解析 字段含义: 建模要求 二、建模思路 灰色预测: 编辑 二次指数平滑法: person相关性 只希望各位以后遇到建模比赛可以艾特认识一下我,我可以提供免费的思路和部分源码,以后…...
5、HAL库驱动W25Qxx
一、 SPI通信驱动W25Qxx 1、使用驱动文件快速配置工程代码驱动W25Qxx (此驱动文件只适合W25Qxx 16M及以下型号,因为访问地址位数不同) 注:本次使用SPI的方式进行访问W25Qxx Flash进行数据读写,关于W25Qxx芯片不会做…...
git rebase 洐合(变基)
洐合 把一个分支整合到另一个分支的办法有两种:merge(合并) 和 rebase(衍合) 为什么使用? 使提交记录更简洁 三种情况 第一种: 合并多条commit记录 git rebase -i HEAD~合并数量 HEAD~3&a…...
Kubernetes 1.18学习笔记
文章目录一、Kubernetes 概述和架构1、kubernetes 基本介绍2、Kubernetes 功能3、Kubernetes 架构组件4、Kubernetes 核心概念5、Kubernetes 工作原理二、Kubernetes 集群搭建1、系统环境准备1.1 安装要求1.2 系统初始化2、客户端工具kubeadm搭建2.1 安装步骤2.2 安装组件2.3 集…...
AJAX技术
AJAX技术 浏览器是多进程的,简单的说就是,浏览器每打开一个标签页,就相当于创建了一个独立的浏览器进程。但是js是基于单线程的,而这个线程就是浏览器的js引擎,浏览器无论在什么时候都只且只有一个线程在运行JavaScri…...
华为OD机试 - 最大排列(JS)
最大排列 题目 给定一组整数,重排序后输出一个最大的整数 输入 数字组合 输出 最大的整数 示例一 输入 10 9输出 910解题思路 我们可以读入一个字符串,将字符串中的单词按照每个单词的字典序长度,字典序从大到小的顺序排序&#x…...
Prometheus Docker安装及监控自身
前提环境: Docker环境 涉及参考文档: 安装Prometheus开始 Prometheusnode_exporter Agent组件 一、部署Prometheus 1、启动容器将文件拷贝出来 docker run -d prom/prometheus2、容器将文件拷贝出来 docker cp 容器ID:/usr/share/prometheus/conso…...
点云处理PCL常用函数与工具
点云处理PCL常用函数与工具 文章目录点云处理PCL常用函数与工具前言一、点云读取与保存数据读取数据保存自定义的点云保存格式二、点云显示点云显示-根据颜色点云显示-根据指定轴数值点云显示-根据指定信息显示多组点云显示三、点云滤波直通滤波统计滤波均匀下采样滤波VoxelGri…...
FyListen 在 MVP 架构中的内存优化表现
FyListen 在 MVP 中的内存优化表现 本文只是分享个人开源框架的内存优化测试,你可以直接跳到最后,参考内存泄漏的分析过程! 项目地址: https://github.com/StudyNoteOfTu/fylisten2-alpha1 由于使用到 AOP,所以直接…...
Qt代码单元测试以及报告生成
简介 单元测试是所有测试中最底层的一类测试,是第一个环节,也是最重要的一个环节,是唯一一次有保证能够代码覆盖率达到100%的测试,是整个软件测试过程的基础和前提,单元测试防止了开发的后期因bug过多而失控࿰…...
vscode构建Vue3.0项目(vite,vue-cli)
构建Vue3.0项目构建Vue3.0项目1.使用Vite构建vue项目的方法以及步骤1. 安装vite2. 运行vite vue 项目3.说明2.使用vue-cli构建vue项目的方法以及步骤1.安装全局vue cli —— 脚手架2、VSCode3.报错4.运行构建Vue3.0项目 1.使用Vite构建vue项目的方法以及步骤 1. 安装vite n…...
【2023】华为OD机试真题Java-题目0215-优雅数组
优雅数组 题目描述 如果一个数组中出现次数最多的元素出现大于等于 k k k 次,被称为k-优雅数组, k k k 也可以被称为优雅阈值。 例如,数组[1, 2, 3, 1, 2, 3, 1],它是一个3-优雅数组,因为元素1出现次数大于等于3次...
通过Prowork每日自动提醒待处理工作任务
对于中小团队来说,由于不需要繁琐的流程和高频的异地沟通,需要一款更适合中小团队的日程和项目管理工具。而Prowork就是这样一款敏捷高效的协同平台。Prowork与以往各种项目管理⼯具最⼤的不同在于,其弱化流程和弱化权限的特性,不…...
Linux自定义系统服务
文章目录一. Linux系统服务二. 自定义系统服务一. Linux系统服务 Linux 系统服务有时也称为守护程序,是在Linux启动时自动加载并在Linux退出时自动停止的系统任务,CentOS 7.x开始,CentOS开始使用 systemd服务来代替 daemon ,原来…...
mongodb lambda 查询插件
需求背景需要一个像mybatis plus 一样的基于lambda, 且面向对象的查询mongo数据的插件。在网上找了很久,没有发现有类似功能的插件。于是自己手写了一个,借助mongoTemplate屏蔽了底层查询语句的实现细节。在此基础上,实现了查询的统一封装。技…...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...
