当前位置: 首页 > news >正文

rv1109/1126 rknn 模型部署过程

rv1109/1126是瑞芯微出的嵌入式AI芯片,带有npu, 可以用于嵌入式人工智能应用。算法工程师训练出的算法要部署到芯片上,需要经过模型转换和量化,下面记录一下整个过程。

量化环境

模型量化需要安装rk的工具包:
rockchip-linux/rknn-toolkit (github.com)
版本要根据开发板的固件支持程度来,如果二者不匹配,可能转出来的模型无法运行或者结果不对。

模型量化

rknn支持caffe,tensorflow,tflite,onnx,mxnet,pytorch等模型量化,下面以onnx为例,其他格式基本类似。即可以使用量化包带的可视化界面,也可以自行写代码,更推荐自己写代码,复用性和灵活性更强,对可视化界面一笔带过。

可视化量化工具

执行

python -m rknn.bin.visualization

image.png

选择对应格式,然后设置模型参数进行量化。
image.png

写代码量化

image.png

基础量化

最简单的量化方式如下,只需设置模型的均值、方差,载入原始模型,调用rknn.build接口,然后export_rknn即可。

from rknn.api import RKNNif __name__ == '__main__':rknn=RKNN()# pre-process configprint('--> config model')rknn.config(channel_mean_value='0 0 0 255',reorder_channel='0 1 2',target_platform=['rv1109'],#quantized_dtype="dynamic_fixed_point-i16")print('done')# Load mxnet modelonnx_model = 'yolov8n.onnx'print('--> Loading model')ret = rknn.load_onnx(onnx_model)if ret != 0:print('Load onnx_model model failed!')exit(ret)print('done')# Build modelprint('--> Building model')ret = rknn.build(do_quantization=True, dataset='../coco_resize.txt', pre_compile=False) # 若要在PC端仿真,pre_compile 为Falseif ret != 0:print('Build model failed!')exit(ret)print('done')print('--> Export RKNN model')ret = rknn.export_rknn('yolov8n_nohead.rknn')if ret != 0:print('Export RKNN model failed!')exit(ret)print('done')rknn.release()

模型量化需要提供量化图片的列表,格式为每行是一张图片的路径, 一般需要几百张,如:

images/0.jpg
images/1.jpg

模型推理验证

有两种方式验证模型的结果,一种是连接开发板,在开发板上运行,可以实际测试模型的推理速度,需要USB连接开发板,一种是在PC端仿真,速度较慢,适合在没有开发板的情况下,验证模型结果是否正确。两种方式使用的代码大部分一样,区别是在PC端仿真时,模型要以pre_compile=False模式进行量化,init_runtime参数为targe=None。

import os
import sys
from rknn.api import RKNN
import cv2
import numpy as npif __name__=="__main__":# Create RKNN objectrknn = RKNN()print('--> Loading RKNN model')ret = rknn.load_rknn('yolov8.rknn')if ret != 0:print('Load  failed!')exit(ret)print('load done')# Init Runtimerknn.init_runtime(target="rv1109")#第二个参数device_id为开发板的设备id,不用填, targe=None时,代表PC仿真image = cv2.imread("1.jpg")outputs = rknn.inference(inputs=[image]) rknn.release()

量化精度评估(逐层)

有些时候,量化损失可能过大,这时我们希望能够逐层比对量化后模型与原始模型,这时需要使用accuracy_analysis接口,这个接口第一个参数是图片列表文件,里面是测试图片的路径,第二个参数是比对结果保存路径:

from rknn.api import RKNNif __name__ == '__main__':rknn=RKNN()# pre-process configprint('--> config model')rknn.config(channel_mean_value='0 0 0 255',reorder_channel='0 1 2',target_platform=['rv1109'],#quantized_dtype="dynamic_fixed_point-i16")print('done')# Load mxnet modelonnx_model = 'yolov8n.onnx'print('--> Loading model')ret = rknn.load_onnx(onnx_model)if ret != 0:print('Load onnx_model model failed!')exit(ret)print('done')# Build modelprint('--> Building model')ret = rknn.build(do_quantization=True, dataset='../coco_resize.txt', pre_compile=False) # 若要在PC端仿真,pre_compile 为Falseif ret != 0:print('Build model failed!')exit(ret)print('done')rknn.accuracy_analysis("test_list.txt", output_dir='./snapshot5')			               print('--> Export RKNN model')ret = rknn.export_rknn('yolov8n_nohead.rknn')if ret != 0:print('Export RKNN model failed!')exit(ret)print('done')rknn.release()

比对文件如下:

Conv__model.0_conv_Conv_214_out0_nhwc_1_320_320_16.tensor    	eculidean_norm=0.030792	cosine_norm=0.999525	eculidean=202.926056	cosine=0.999526
Sigmoid__model.0_act_Sigmoid_213_Mul__model.0_act_Mul_212_out0_nhwc_1_320_320_16.tensor 	eculidean_norm=0.049676	cosine_norm=0.998766	eculidean=178.751434	cosine=0.998767
Conv__model.1_conv_Conv_210_out0_nhwc_1_160_160_32.tensor    	eculidean_norm=0.103382	cosine_norm=0.994656	eculidean=521.709229	cosine=0.994656
Sigmoid__model.1_act_Sigmoid_211_Mul__model.1_act_Mul_209_out0_nhwc_1_160_160_32.tensor 	eculidean_norm=0.113702	cosine_norm=0.993536	eculidean=436.044495	cosine=0.993536
Conv__model.2_cv1_conv_Conv_208_out0_nhwc_1_160_160_32.tensor 	eculidean_norm=0.120058	cosine_norm=0.992793	eculidean=351.808380	cosine=0.992794
Sigmoid__model.2_cv1_act_Sigmoid_207_Mul__model.2_cv1_act_Mul_205_out0_nhwc_1_160_160_32.tensor 	eculidean_norm=0.169184	cosine_norm=0.985688	eculidean=262.819550	cosine=0.985688

混合量化

有些时候,使用默认量化方法模型精度损失较大,我们通过逐层分析,也知道了那些层的损失较大,这时就需要控制一些层不量化,或以更高精度模式量化,这种方式就是混合量化。
与基础量化相比,混合量化分为两步:
第一步是通过rknn.hybrid_quantization_step1(替换基础量化中的rknn.build)获得模型的量化配置文件:

rknn.hybrid_quantization_step1(dataset='../coco_resize.txt')

该接口会生成3个文件:

xx.data
xx.json
xx.quantization.cfg

其中,.cfg文件时量化配置文件,用于控制每一层的量化:

%YAML 1.2
---
# add layer name and corresponding quantized_dtype to customized_quantize_layers, e.g conv2_3: float32
customized_quantize_layers: {}
quantize_parameters:'@attach_Concat_/model.22/Concat_5/out0_0:out0':dtype: asymmetric_affinemethod: layermax_value:-   647.7965087890625min_value:-   0.0zero_point:-   0scale:-   2.5403785705566406qtype: u8'@Concat_/model.22/Concat_5_1:out0':dtype: asymmetric_affinemethod: layermax_value:-   647.7965087890625min_value:-   0.0zero_point:-   0scale:-   2.5403785705566406qtype: u8

对于不量化或者以其他精度模式量化的层,以字典形式写在customized_quantize_layers中,rv1109支持asymmetric_quantized-u8,dynamic_fixed_point-i8和dynamic_fixed_point-i16,默认情况下,以asymmetric_quantized-u8方式量化,在需要更高精度时,可用dynamic_fixed_point-i16,但速度会更慢。对于损失较大的层,我们可以尝试设置dynamic_fixed_point-i16量化(若float32则不量化):

customized_quantize_layers: {"Split_/model.22/Split_21": "dynamic_fixed_point-i16","Reshape_/model.22/dfl/Reshape_20": "float32"
}

设置完成量化配置后,使用rknn.hybrid_quantization_step2进行量化:

from rknn.api import RKNNif __name__ == '__main__':rknn=RKNN()# pre-process configprint('--> config model')rknn.config(channel_mean_value='0 0 0 255',reorder_channel='0 1 2',target_platform=['rv1109'],#quantized_dtype="dynamic_fixed_point-i16")print('done')# Load mxnet modelonnx_model = 'yolov8n.onnx'print('--> Loading model')ret = rknn.load_onnx(onnx_model)if ret != 0:print('Load onnx_model model failed!')exit(ret)print('done')# Build modelprint('--> Building model')rknn.hybrid_quantization_step2(dataset='../coco_resize.txt',   model_input='torch_jit.json',data_input="torch_jit.data",model_quantization_cfg="torch_jit.quantization.cfg",pre_compile=False)if ret != 0:print('Build model failed!')exit(ret)print('done')rknn.accuracy_analysis("test_list.txt", output_dir='./snapshot5')			               print('--> Export RKNN model')ret = rknn.export_rknn('yolov8n_nohead.rknn')if ret != 0:print('Export RKNN model failed!')exit(ret)print('done')rknn.release()

相关文章:

rv1109/1126 rknn 模型部署过程

rv1109/1126是瑞芯微出的嵌入式AI芯片,带有npu, 可以用于嵌入式人工智能应用。算法工程师训练出的算法要部署到芯片上,需要经过模型转换和量化,下面记录一下整个过程。 量化环境 模型量化需要安装rk的工具包: rockchip-linux/rk…...

Android平台一对一音视频通话方案对比:WebRTC VS RTMP VS RTSP

一对一音视频通话使用场景 一对一音视频通话都需要稳定、清晰和流畅,以确保良好的用户体验,常用的使用场景如下: 社交应用:社交应用是一种常见的使用场景,用户可以通过音视频通话进行面对面的交流;在线教…...

--binlog-row-event-max-size

--binlog-row-event-max-size MySQL中用于控制rows格式的Binlog,binlog以chunk的方式存储,每个chunk的大小由binlog-row-event-max-size 进行控制; 如果event比较大的时候可以调大这个值;;改值必须是256的倍数&#…...

Jmeter命令行运行实例讲解

1. 简介 使用非 GUI 模式&#xff0c;即命令行模式运行 JMeter 测试脚本能够大大缩减所需要的系统资 本文介绍windows下以命令行模式运行的方法。 1.1. 命令介绍 jmeter -n -t <testplan filename> -l <listener filename> 示例&#xff1a; jmeter -n -t test…...

pl/sql函数如何返回多行数据?在线等......

​编辑csm8109022010-01-27 09:59:18 这个问题我以前问过类似的&#xff0c;但一直没得到如意的答案&#xff01;在oracle 里soctt的用户下的emp表&#xff0c;比如写一个函数&#xff0c;传入的参数为部门编号&#xff0c;然后返回所有该部门人员信息的函数。要用到游标&…...

Ubuntu Find命令详解

一、Find命令简介 Ubuntu的Find命令是一种常用的终端指令&#xff0c;用于在文件系统中查找符合条件的文件和目录。该命令的语法格式如下&#xff1a; find [PATH] [OPTION] [EXPRESSION]其中&#xff0c;PATH表示待查找的目录&#xff0c;OPTION为选项参数&#xff0c;EXPRES…...

ADS Momentum学习笔记

ADS Momentum的简介 ADS Layout界面仿真采用的方法主要是Momentum&#xff08;矩量法&#xff09;。 Momentum的特点 Momentum是高级设计系统&#xff08;ADS&#xff09;的重要组成部分&#xff0c;它提供了设计现代通信系统的电磁仿真。它可以用来计算一般平面电路的S参数…...

解决Vue3 使用Element-Plus导航刷新active高亮消失

解决Vue3 使用Element-Plus导航刷新后active高亮消失的问题 启用路由模式会在激活导航时以 index 作为 path 进行路由跳转 使用 default-active 来设置加载时的激活项。 接下来打印一下选中项index和index路径&#xff0c; 刷新也是没有任何问题的&#xff0c;active不会消失…...

K8S系列文章之 一键部署K8S环境

部署的原理是基于自动化部署工具 Ansible 实现的&#xff0c;需要提前安装Ansible 并配置下主机节点环境 1. 安装 Ansible 首先ansible基于python2.X 环境&#xff0c;默认centos都已经安装好了python2环境 // 最好更新下库 // yum update yum install -y epel-release yum i…...

Spring Boot、Spring Cloud、Spring Alibaba 版本对照关系及稳定兼容版本

Spring Boot、Spring Cloud、Spring Alibaba 版本对照关系及稳定兼容版本 引言 在 Java 生态系统中&#xff0c;Spring Boot、Spring Cloud 和 Spring Alibaba 是非常流行的框架&#xff0c;它们提供了丰富的功能和优雅的解决方案。然而&#xff0c;随着不断的发展和更新&…...

虫情监测仪介绍—技术原理、功能优势是什么?

KH-CQPest虫情监测仪是做好虫情监测的重要设备&#xff0c;利用虫情监测仪能够对农业大田、智慧温室、林业等场景的害虫分布情况及害虫种类进行监测&#xff0c;协助人们制定合理的防治措施。 1.技术原理&#xff1a; KH-CQPest虫情监测仪采用光学诱虫原理&#xff0c;配合传感…...

HTML5 Canvas和Svg:哪个简单且好用?

HTML5 Canvas 和 SVG 都是基于标准的 HTML5 技术&#xff0c;可用于创建令人惊叹的图形和视觉体验。 首先&#xff0c;让我们花几句话介绍HTML5 Canvas和SVG。 什么是Canvas? Canvas&#xff08;通过 标签使用&#xff09;是一个 HTML 元素&#xff0c;用于在用户计算机屏幕…...

ChatGPT在社交媒体聊天和评论分析中的应用如何?

ChatGPT在社交媒体聊天和评论分析中具有广泛的应用前景&#xff0c;可以帮助企业、个人和社会从多个角度更好地理解用户观点、趋势和情感。以下是详细的讨论&#xff1a; **1. 舆情分析与趋势预测&#xff1a;** ChatGPT可以用于分析社交媒体上的评论、帖子和消息&#xff0c;…...

DoIP学习笔记系列:(四)用CAPL脚本读取DID的关键点

文章目录 1. 如何在CAPL中读取DID?1.1 避坑如何新建CAPL工程,在此不再赘述,本章主要分享一下如何在CAPL中调用DoIP接口、diag接口进行DoIP和诊断的测试。 1. 如何在CAPL中读取DID? 通常在实际项目中,会有很多DID,各种版本号、各种观测量,如果手动点,显然很麻烦,如果要…...

chrome插件开发实例06-定制自己的Chrome DevTools调试工具

目录 Chrome DevTools 调试工具 演示 ​编辑 源码 devtools.html devtools.js panel.html panel.js...

安卓读取,添加,更新,删除联系人,读取短信

目录 读取联系人 添加联系人 更新联系人 删除联系人 读取短信 读取联系人 安卓可以通过contentResolver来读取联系人表&#xff0c;联系人表的Uri信息是&#xff1a;content://com.android.contacts/data/phones 从而输出联系人信息&#xff0c; 需要相关权限&#xff1a…...

Practices6|69. x 的平方根、(哈希表)205. 同构字符串、(哈希表)1002. 查找共用字符

69. x 的平方根 1.题目&#xff1a; 给你一个非负整数 x &#xff0c;计算并返回 x 的 算术平方根 。 由于返回类型是整数&#xff0c;结果只保留 整数部分 &#xff0c;小数部分将被 舍去 。 注意&#xff1a;不允许使用任何内置指数函数和算符&#xff0c;例如 pow(x, 0.…...

Qt扫盲-Model/View入门

Model/View 编程入门 一、概述二、介绍1. 标准部件2. Model/View 控件3. Model/View控件概述4. 在表格单和 model 之间使用适配器 Adapters 三、 简单的 model / view 应用程序示例1. 一个只读表2. 使用role扩展只读示例3. 表格单元中的时钟4. 为列和行设置标题5. 最小编辑示例…...

关于win11 debian wsl 子系统安装启动docker一直starting,无法启动

首先我先说明&#xff0c;我的步骤都是按照官网步骤来的 通过官网的操作步骤 通过测试命令 sudo docker run hello-world得到下面的命令&#xff0c;我们通过启动命令 sudo service docker start 执行结果如下图 也就是说无法启动&#xff0c;一直显示在启动中 遇到这种情况…...

Nginx反向代理配置+负载均衡集群部署

文章目录 负载均衡反向代理基础环境部署&#xff1a;什么是代理实验环境图流量过程 环境部署准备两台Web服务器安装Nginx准备页面内容添加主机名 代理服务器配置 修改windos hosts文件测试&#xff1a;终端浏览器 负载均衡反向代理基础环境部署&#xff1a; 什么是代理 正向代…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案

JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停​​ 1. ​​安全点(Safepoint)阻塞​​ ​​现象​​:JVM暂停但无GC日志,日志显示No GCs detected。​​原因​​:JVM等待所有线程进入安全点(如…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

数据结构第5章:树和二叉树完全指南(自整理详细图文笔记)

名人说&#xff1a;莫道桑榆晚&#xff0c;为霞尚满天。——刘禹锡&#xff08;刘梦得&#xff0c;诗豪&#xff09; 原创笔记&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 上一篇&#xff1a;《数据结构第4章 数组和广义表》…...

车载诊断架构 --- ZEVonUDS(J1979-3)简介第一篇

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是…...

Python 高级应用10:在python 大型项目中 FastAPI 和 Django 的相互配合

无论是python&#xff0c;或者java 的大型项目中&#xff0c;都会涉及到 自身平台微服务之间的相互调用&#xff0c;以及和第三发平台的 接口对接&#xff0c;那在python 中是怎么实现的呢&#xff1f; 在 Python Web 开发中&#xff0c;FastAPI 和 Django 是两个重要但定位不…...

【笔记】AI Agent 项目 SUNA 部署 之 Docker 构建记录

#工作记录 构建过程记录 Microsoft Windows [Version 10.0.27871.1000] (c) Microsoft Corporation. All rights reserved.(suna-py3.12) F:\PythonProjects\suna>python setup.py --admin███████╗██╗ ██╗███╗ ██╗ █████╗ ██╔════╝…...