当前位置: 首页 > news >正文

rv1109/1126 rknn 模型部署过程

rv1109/1126是瑞芯微出的嵌入式AI芯片,带有npu, 可以用于嵌入式人工智能应用。算法工程师训练出的算法要部署到芯片上,需要经过模型转换和量化,下面记录一下整个过程。

量化环境

模型量化需要安装rk的工具包:
rockchip-linux/rknn-toolkit (github.com)
版本要根据开发板的固件支持程度来,如果二者不匹配,可能转出来的模型无法运行或者结果不对。

模型量化

rknn支持caffe,tensorflow,tflite,onnx,mxnet,pytorch等模型量化,下面以onnx为例,其他格式基本类似。即可以使用量化包带的可视化界面,也可以自行写代码,更推荐自己写代码,复用性和灵活性更强,对可视化界面一笔带过。

可视化量化工具

执行

python -m rknn.bin.visualization

image.png

选择对应格式,然后设置模型参数进行量化。
image.png

写代码量化

image.png

基础量化

最简单的量化方式如下,只需设置模型的均值、方差,载入原始模型,调用rknn.build接口,然后export_rknn即可。

from rknn.api import RKNNif __name__ == '__main__':rknn=RKNN()# pre-process configprint('--> config model')rknn.config(channel_mean_value='0 0 0 255',reorder_channel='0 1 2',target_platform=['rv1109'],#quantized_dtype="dynamic_fixed_point-i16")print('done')# Load mxnet modelonnx_model = 'yolov8n.onnx'print('--> Loading model')ret = rknn.load_onnx(onnx_model)if ret != 0:print('Load onnx_model model failed!')exit(ret)print('done')# Build modelprint('--> Building model')ret = rknn.build(do_quantization=True, dataset='../coco_resize.txt', pre_compile=False) # 若要在PC端仿真,pre_compile 为Falseif ret != 0:print('Build model failed!')exit(ret)print('done')print('--> Export RKNN model')ret = rknn.export_rknn('yolov8n_nohead.rknn')if ret != 0:print('Export RKNN model failed!')exit(ret)print('done')rknn.release()

模型量化需要提供量化图片的列表,格式为每行是一张图片的路径, 一般需要几百张,如:

images/0.jpg
images/1.jpg

模型推理验证

有两种方式验证模型的结果,一种是连接开发板,在开发板上运行,可以实际测试模型的推理速度,需要USB连接开发板,一种是在PC端仿真,速度较慢,适合在没有开发板的情况下,验证模型结果是否正确。两种方式使用的代码大部分一样,区别是在PC端仿真时,模型要以pre_compile=False模式进行量化,init_runtime参数为targe=None。

import os
import sys
from rknn.api import RKNN
import cv2
import numpy as npif __name__=="__main__":# Create RKNN objectrknn = RKNN()print('--> Loading RKNN model')ret = rknn.load_rknn('yolov8.rknn')if ret != 0:print('Load  failed!')exit(ret)print('load done')# Init Runtimerknn.init_runtime(target="rv1109")#第二个参数device_id为开发板的设备id,不用填, targe=None时,代表PC仿真image = cv2.imread("1.jpg")outputs = rknn.inference(inputs=[image]) rknn.release()

量化精度评估(逐层)

有些时候,量化损失可能过大,这时我们希望能够逐层比对量化后模型与原始模型,这时需要使用accuracy_analysis接口,这个接口第一个参数是图片列表文件,里面是测试图片的路径,第二个参数是比对结果保存路径:

from rknn.api import RKNNif __name__ == '__main__':rknn=RKNN()# pre-process configprint('--> config model')rknn.config(channel_mean_value='0 0 0 255',reorder_channel='0 1 2',target_platform=['rv1109'],#quantized_dtype="dynamic_fixed_point-i16")print('done')# Load mxnet modelonnx_model = 'yolov8n.onnx'print('--> Loading model')ret = rknn.load_onnx(onnx_model)if ret != 0:print('Load onnx_model model failed!')exit(ret)print('done')# Build modelprint('--> Building model')ret = rknn.build(do_quantization=True, dataset='../coco_resize.txt', pre_compile=False) # 若要在PC端仿真,pre_compile 为Falseif ret != 0:print('Build model failed!')exit(ret)print('done')rknn.accuracy_analysis("test_list.txt", output_dir='./snapshot5')			               print('--> Export RKNN model')ret = rknn.export_rknn('yolov8n_nohead.rknn')if ret != 0:print('Export RKNN model failed!')exit(ret)print('done')rknn.release()

比对文件如下:

Conv__model.0_conv_Conv_214_out0_nhwc_1_320_320_16.tensor    	eculidean_norm=0.030792	cosine_norm=0.999525	eculidean=202.926056	cosine=0.999526
Sigmoid__model.0_act_Sigmoid_213_Mul__model.0_act_Mul_212_out0_nhwc_1_320_320_16.tensor 	eculidean_norm=0.049676	cosine_norm=0.998766	eculidean=178.751434	cosine=0.998767
Conv__model.1_conv_Conv_210_out0_nhwc_1_160_160_32.tensor    	eculidean_norm=0.103382	cosine_norm=0.994656	eculidean=521.709229	cosine=0.994656
Sigmoid__model.1_act_Sigmoid_211_Mul__model.1_act_Mul_209_out0_nhwc_1_160_160_32.tensor 	eculidean_norm=0.113702	cosine_norm=0.993536	eculidean=436.044495	cosine=0.993536
Conv__model.2_cv1_conv_Conv_208_out0_nhwc_1_160_160_32.tensor 	eculidean_norm=0.120058	cosine_norm=0.992793	eculidean=351.808380	cosine=0.992794
Sigmoid__model.2_cv1_act_Sigmoid_207_Mul__model.2_cv1_act_Mul_205_out0_nhwc_1_160_160_32.tensor 	eculidean_norm=0.169184	cosine_norm=0.985688	eculidean=262.819550	cosine=0.985688

混合量化

有些时候,使用默认量化方法模型精度损失较大,我们通过逐层分析,也知道了那些层的损失较大,这时就需要控制一些层不量化,或以更高精度模式量化,这种方式就是混合量化。
与基础量化相比,混合量化分为两步:
第一步是通过rknn.hybrid_quantization_step1(替换基础量化中的rknn.build)获得模型的量化配置文件:

rknn.hybrid_quantization_step1(dataset='../coco_resize.txt')

该接口会生成3个文件:

xx.data
xx.json
xx.quantization.cfg

其中,.cfg文件时量化配置文件,用于控制每一层的量化:

%YAML 1.2
---
# add layer name and corresponding quantized_dtype to customized_quantize_layers, e.g conv2_3: float32
customized_quantize_layers: {}
quantize_parameters:'@attach_Concat_/model.22/Concat_5/out0_0:out0':dtype: asymmetric_affinemethod: layermax_value:-   647.7965087890625min_value:-   0.0zero_point:-   0scale:-   2.5403785705566406qtype: u8'@Concat_/model.22/Concat_5_1:out0':dtype: asymmetric_affinemethod: layermax_value:-   647.7965087890625min_value:-   0.0zero_point:-   0scale:-   2.5403785705566406qtype: u8

对于不量化或者以其他精度模式量化的层,以字典形式写在customized_quantize_layers中,rv1109支持asymmetric_quantized-u8,dynamic_fixed_point-i8和dynamic_fixed_point-i16,默认情况下,以asymmetric_quantized-u8方式量化,在需要更高精度时,可用dynamic_fixed_point-i16,但速度会更慢。对于损失较大的层,我们可以尝试设置dynamic_fixed_point-i16量化(若float32则不量化):

customized_quantize_layers: {"Split_/model.22/Split_21": "dynamic_fixed_point-i16","Reshape_/model.22/dfl/Reshape_20": "float32"
}

设置完成量化配置后,使用rknn.hybrid_quantization_step2进行量化:

from rknn.api import RKNNif __name__ == '__main__':rknn=RKNN()# pre-process configprint('--> config model')rknn.config(channel_mean_value='0 0 0 255',reorder_channel='0 1 2',target_platform=['rv1109'],#quantized_dtype="dynamic_fixed_point-i16")print('done')# Load mxnet modelonnx_model = 'yolov8n.onnx'print('--> Loading model')ret = rknn.load_onnx(onnx_model)if ret != 0:print('Load onnx_model model failed!')exit(ret)print('done')# Build modelprint('--> Building model')rknn.hybrid_quantization_step2(dataset='../coco_resize.txt',   model_input='torch_jit.json',data_input="torch_jit.data",model_quantization_cfg="torch_jit.quantization.cfg",pre_compile=False)if ret != 0:print('Build model failed!')exit(ret)print('done')rknn.accuracy_analysis("test_list.txt", output_dir='./snapshot5')			               print('--> Export RKNN model')ret = rknn.export_rknn('yolov8n_nohead.rknn')if ret != 0:print('Export RKNN model failed!')exit(ret)print('done')rknn.release()

相关文章:

rv1109/1126 rknn 模型部署过程

rv1109/1126是瑞芯微出的嵌入式AI芯片,带有npu, 可以用于嵌入式人工智能应用。算法工程师训练出的算法要部署到芯片上,需要经过模型转换和量化,下面记录一下整个过程。 量化环境 模型量化需要安装rk的工具包: rockchip-linux/rk…...

Android平台一对一音视频通话方案对比:WebRTC VS RTMP VS RTSP

一对一音视频通话使用场景 一对一音视频通话都需要稳定、清晰和流畅,以确保良好的用户体验,常用的使用场景如下: 社交应用:社交应用是一种常见的使用场景,用户可以通过音视频通话进行面对面的交流;在线教…...

--binlog-row-event-max-size

--binlog-row-event-max-size MySQL中用于控制rows格式的Binlog,binlog以chunk的方式存储,每个chunk的大小由binlog-row-event-max-size 进行控制; 如果event比较大的时候可以调大这个值;;改值必须是256的倍数&#…...

Jmeter命令行运行实例讲解

1. 简介 使用非 GUI 模式&#xff0c;即命令行模式运行 JMeter 测试脚本能够大大缩减所需要的系统资 本文介绍windows下以命令行模式运行的方法。 1.1. 命令介绍 jmeter -n -t <testplan filename> -l <listener filename> 示例&#xff1a; jmeter -n -t test…...

pl/sql函数如何返回多行数据?在线等......

​编辑csm8109022010-01-27 09:59:18 这个问题我以前问过类似的&#xff0c;但一直没得到如意的答案&#xff01;在oracle 里soctt的用户下的emp表&#xff0c;比如写一个函数&#xff0c;传入的参数为部门编号&#xff0c;然后返回所有该部门人员信息的函数。要用到游标&…...

Ubuntu Find命令详解

一、Find命令简介 Ubuntu的Find命令是一种常用的终端指令&#xff0c;用于在文件系统中查找符合条件的文件和目录。该命令的语法格式如下&#xff1a; find [PATH] [OPTION] [EXPRESSION]其中&#xff0c;PATH表示待查找的目录&#xff0c;OPTION为选项参数&#xff0c;EXPRES…...

ADS Momentum学习笔记

ADS Momentum的简介 ADS Layout界面仿真采用的方法主要是Momentum&#xff08;矩量法&#xff09;。 Momentum的特点 Momentum是高级设计系统&#xff08;ADS&#xff09;的重要组成部分&#xff0c;它提供了设计现代通信系统的电磁仿真。它可以用来计算一般平面电路的S参数…...

解决Vue3 使用Element-Plus导航刷新active高亮消失

解决Vue3 使用Element-Plus导航刷新后active高亮消失的问题 启用路由模式会在激活导航时以 index 作为 path 进行路由跳转 使用 default-active 来设置加载时的激活项。 接下来打印一下选中项index和index路径&#xff0c; 刷新也是没有任何问题的&#xff0c;active不会消失…...

K8S系列文章之 一键部署K8S环境

部署的原理是基于自动化部署工具 Ansible 实现的&#xff0c;需要提前安装Ansible 并配置下主机节点环境 1. 安装 Ansible 首先ansible基于python2.X 环境&#xff0c;默认centos都已经安装好了python2环境 // 最好更新下库 // yum update yum install -y epel-release yum i…...

Spring Boot、Spring Cloud、Spring Alibaba 版本对照关系及稳定兼容版本

Spring Boot、Spring Cloud、Spring Alibaba 版本对照关系及稳定兼容版本 引言 在 Java 生态系统中&#xff0c;Spring Boot、Spring Cloud 和 Spring Alibaba 是非常流行的框架&#xff0c;它们提供了丰富的功能和优雅的解决方案。然而&#xff0c;随着不断的发展和更新&…...

虫情监测仪介绍—技术原理、功能优势是什么?

KH-CQPest虫情监测仪是做好虫情监测的重要设备&#xff0c;利用虫情监测仪能够对农业大田、智慧温室、林业等场景的害虫分布情况及害虫种类进行监测&#xff0c;协助人们制定合理的防治措施。 1.技术原理&#xff1a; KH-CQPest虫情监测仪采用光学诱虫原理&#xff0c;配合传感…...

HTML5 Canvas和Svg:哪个简单且好用?

HTML5 Canvas 和 SVG 都是基于标准的 HTML5 技术&#xff0c;可用于创建令人惊叹的图形和视觉体验。 首先&#xff0c;让我们花几句话介绍HTML5 Canvas和SVG。 什么是Canvas? Canvas&#xff08;通过 标签使用&#xff09;是一个 HTML 元素&#xff0c;用于在用户计算机屏幕…...

ChatGPT在社交媒体聊天和评论分析中的应用如何?

ChatGPT在社交媒体聊天和评论分析中具有广泛的应用前景&#xff0c;可以帮助企业、个人和社会从多个角度更好地理解用户观点、趋势和情感。以下是详细的讨论&#xff1a; **1. 舆情分析与趋势预测&#xff1a;** ChatGPT可以用于分析社交媒体上的评论、帖子和消息&#xff0c;…...

DoIP学习笔记系列:(四)用CAPL脚本读取DID的关键点

文章目录 1. 如何在CAPL中读取DID?1.1 避坑如何新建CAPL工程,在此不再赘述,本章主要分享一下如何在CAPL中调用DoIP接口、diag接口进行DoIP和诊断的测试。 1. 如何在CAPL中读取DID? 通常在实际项目中,会有很多DID,各种版本号、各种观测量,如果手动点,显然很麻烦,如果要…...

chrome插件开发实例06-定制自己的Chrome DevTools调试工具

目录 Chrome DevTools 调试工具 演示 ​编辑 源码 devtools.html devtools.js panel.html panel.js...

安卓读取,添加,更新,删除联系人,读取短信

目录 读取联系人 添加联系人 更新联系人 删除联系人 读取短信 读取联系人 安卓可以通过contentResolver来读取联系人表&#xff0c;联系人表的Uri信息是&#xff1a;content://com.android.contacts/data/phones 从而输出联系人信息&#xff0c; 需要相关权限&#xff1a…...

Practices6|69. x 的平方根、(哈希表)205. 同构字符串、(哈希表)1002. 查找共用字符

69. x 的平方根 1.题目&#xff1a; 给你一个非负整数 x &#xff0c;计算并返回 x 的 算术平方根 。 由于返回类型是整数&#xff0c;结果只保留 整数部分 &#xff0c;小数部分将被 舍去 。 注意&#xff1a;不允许使用任何内置指数函数和算符&#xff0c;例如 pow(x, 0.…...

Qt扫盲-Model/View入门

Model/View 编程入门 一、概述二、介绍1. 标准部件2. Model/View 控件3. Model/View控件概述4. 在表格单和 model 之间使用适配器 Adapters 三、 简单的 model / view 应用程序示例1. 一个只读表2. 使用role扩展只读示例3. 表格单元中的时钟4. 为列和行设置标题5. 最小编辑示例…...

关于win11 debian wsl 子系统安装启动docker一直starting,无法启动

首先我先说明&#xff0c;我的步骤都是按照官网步骤来的 通过官网的操作步骤 通过测试命令 sudo docker run hello-world得到下面的命令&#xff0c;我们通过启动命令 sudo service docker start 执行结果如下图 也就是说无法启动&#xff0c;一直显示在启动中 遇到这种情况…...

Nginx反向代理配置+负载均衡集群部署

文章目录 负载均衡反向代理基础环境部署&#xff1a;什么是代理实验环境图流量过程 环境部署准备两台Web服务器安装Nginx准备页面内容添加主机名 代理服务器配置 修改windos hosts文件测试&#xff1a;终端浏览器 负载均衡反向代理基础环境部署&#xff1a; 什么是代理 正向代…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

Vite中定义@软链接

在webpack中可以直接通过符号表示src路径&#xff0c;但是vite中默认不可以。 如何实现&#xff1a; vite中提供了resolve.alias&#xff1a;通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...

Qemu arm操作系统开发环境

使用qemu虚拟arm硬件比较合适。 步骤如下&#xff1a; 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载&#xff0c;下载地址&#xff1a;https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...