当前位置: 首页 > news >正文

BZOJ4403 序列统计

题目描述

给定三个正整数N、L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量。输出答案对106+310^6+3106+3取模的结果。

输入

输入第一行包含一个整数T,表示数据组数。
第2到第T+1行每行包含三个整数N、L和R,N、L和R的意义如题所述。
1≤N,L,R≤10^9,1≤T≤100,输入数据保证L≤R。

输出

输出包含T行,每行有一个数字,表示你所求出的答案对106+310^6+3106+3取模的结果。

样例输入

2
1 4 5
2 4 5

样例输出

2
5

题解

前置知识:lucas定理

在区间[l,r][l,r][l,r]中长度为nnn的单调不降序列的数量,即Cr−l+1+n−1n=Cr−l+nnC_{r-l+1+n-1}^n=C_{r-l+n}^nCrl+1+n1n=Crl+nn个。

题意即求∑i=1nCr−l+ii\sum\limits_{i=1}^nC_{r-l+i}^ii=1nCrl+ii。因为Cnm=Cnn−mC_n^m=C_n^{n-m}Cnm=Cnnm,所以

∑i=1nCr−l+ii=∑i=1nCr−l+ir−l\sum\limits_{i=1}^nC_{r-l+i}^i=\sum\limits_{i=1}^nC_{r-l+i}^{r-l}i=1nCrl+ii=i=1nCrl+irl

又因为

∑i=mnCim=Cn+1m+1\sum\limits_{i=m}^nC_i^m=C_{n+1}^{m+1}i=mnCim=Cn+1m+1

所以

∑i=1nCr−l+ir−l=(∑i=0nCr−l+ir−l)−1=Cr−l+n+1r−l+1−1=Cr−l+n+1n−1\sum\limits_{i=1}^nC_{r-l+i}^{r-l}=(\sum\limits_{i=0}^nC_{r-l+i}^{r-l})-1=C_{r-l+n+1}^{r-l+1}-1=C_{r-l+n+1}^n-1i=1nCrl+irl=(i=0nCrl+irl)1=Crl+n+1rl+11=Crl+n+1n1

Cr−l+n+1n−1C_{r-l+n+1}^n-1Crl+n+1n1即为答案,用lucas定理求出即可。

code

#include<bits/stdc++.h>
using namespace std;
int n;
long long vt=1,x,y,ans=0,a[15],b[15];
void exgcd(long long c,long long d){if(d==0){x=1;y=0;return;}exgcd(d,c%d);long long t=x;x=y;y=t-c/d*y;
}
int main()
{scanf("%d",&n);for(int i=1;i<=n;i++){scanf("%lld%lld",&a[i],&b[i]);vt=vt*a[i];}for(int i=1;i<=n;i++){exgcd(vt/a[i],a[i]);x=(x%a[i]+a[i])%a[i];ans=(ans+vt/a[i]*b[i]*x%vt)%vt;}printf("%lld",ans);return 0;
}

相关文章:

BZOJ4403 序列统计

题目描述 给定三个正整数N、L和R&#xff0c;统计长度在1到N之间&#xff0c;元素大小都在L到R之间的单调不降序列的数量。输出答案对106310^631063取模的结果。 输入 输入第一行包含一个整数T&#xff0c;表示数据组数。 第2到第T1行每行包含三个整数N、L和R&#xff0c;N、…...

如何正确使用 钳位二极管

在电路设计中,经常遇到需要IO保护的场景,比如ADC采样,GPIO接收电平信号等。 常见的保护方法有分压,限幅,限流等。本次我们讨论限幅方法中的 钳位二极管。 我们以BAT54S为例,它的符号是这样的, 而在很多手册里,我们可以看到,一般是这样使用的: 因此,我设计了简化…...

【C语言进阶】动态内存管理

&#x1f466;个人主页&#xff1a;Weraphael ✍&#x1f3fb;作者简介&#xff1a;目前是C语言学习者 ✈️专栏&#xff1a;C语言航路 &#x1f40b; 希望大家多多支持&#xff0c;咱一起进步&#xff01;&#x1f601; 如果文章对你有帮助的话 欢迎 评论&#x1f4ac; 点赞&a…...

第一批因ChatGPT坐牢的人,已经上路了

大家好&#xff0c;我是 Jack。 ChatGPT 的火爆有目共睹&#xff0c;有人靠着它赚了第一桶金&#xff0c;也有人靠着它即将吃上第一顿牢饭。 任何一件东西的火爆&#xff0c;总会给一些聪明人带来机会。 艾尔登法环火的时候&#xff0c;一堆淘宝卖魂的&#xff1b;羊了个羊火…...

Eclipse下Maven的集成

Eclipse下Maven的集成 2.1指定本地maven环境 参考&#xff1a;Eclipse的Maven创建_叶书文的博客-CSDN博客_eclipse创建maven项目 指定用本地maven指定maven仓库设置和地址2.2创建maven项目 1.新建 2.目录设置 3.坐标设置&#xff08;随便写就行&#xff09; 4.目录结构 2.3配置…...

Elasticsearch7学习笔记(尚硅谷)

文章目录一、ElasticSearch概述1、ElasticSearch是什么2、全文搜索引擎3、ElasticSearch 和 Solr3.1 概述3.2 比较总结二、Elasticsearch入门1、Elasticsearch安装1.1 下载使用1.2 数据格式2、索引操作3、文档操作&#xff08;了解&#xff09;3.1 创建文档3.2 文档查询3.3 文档…...

前端学习第一阶段-第7章 品优购电商项目

7-1 品优购项目介绍及准备工作 01-品优购项目导读 02-网站制作流程 03-品优购项目规划 04-品优购项目搭建 05-品优购项目-样式的模块化开发 06-品优购项目-favicon图标制作 07-品优购项目-TDK三大标签SEO优化 7-2 首页Header区域实现 08-品优购首页-快捷导航shortcut结构搭建 0…...

cocos2dx 4.0 - cpp - pc版 环境搭建

开发环境vs2022 cocos2dx4.0 python2.7.18 cmake3.25安装教程&#xff08;环境搭建&#xff09;安装VS2022-Community&#xff0c; 勾选c进行安装安装cmake3.25, 勾选环境变量进行安装安装python2.7.18, 勾选环境变量进行安装下载cocos2dx4.0并解压配置cocos2dx:运行cmd,进入…...

剑指 Offer 53 - I. 在排序数组中查找数字 I

原题链接 难度&#xff1a;easy\color{Green}{easy}easy 题目描述 统计一个数字在排序数组中出现的次数。 示例 1: 输入: nums [5,7,7,8,8,10], target 8 输出: 2示例 2: 输入: nums [5,7,7,8,8,10], target 6 输出: 0提示&#xff1a; 0<nums.length<1050 <…...

华为OD机试 - 删除指定目录(Python) | 机试题算法思路 【2023】

最近更新的博客 华为OD机试 - 热点网络统计 | 备考思路,刷题要点,答疑 【新解法】 华为OD机试 - 查找单入口空闲区域 | 备考思路,刷题要点,答疑 【新解法】 华为OD机试 - 好朋友 | 备考思路,刷题要点,答疑 【新解法】 华为OD机试 - 找出同班小朋友 | 备考思路,刷题要点…...

PowerShell Install Office 2021 Pro Plus Viso Professional

前言 微软Office在很长一段时间内都是最常用和最受欢迎的软件。从小型创业公司到大公司,它的使用比例相当。它可以很容易地从微软的官方网站下载。但是,微软只提供安装程序,而不提供完整的软件供下载。这些安装文件通常比较小。下载并运行后,安装的文件将从后端服务器安装M…...

KubeSphere实战

文章目录一、KubeSphere平台安装1、Kubernetes上安装KubeSphere1.1 安装docker1.2 安装Kubernetes1.3 前置环境之nfs存储1.4 前置环境之metrics-server1.5 安装KubeSphere2、Linux单节点部署KubeSphere3、Linux多节点部署KubeSphere(推荐)二、KubeSphere实战1、多租户实战2、中…...

Linux 简介

Linux 内核最初只是由芬兰人林纳斯托瓦兹&#xff08;Linus Torvalds&#xff09;在赫尔辛基大学上学时出于个人爱好而编写的。 Linux 是一套免费使用和自由传播的类 Unix 操作系统&#xff0c;是一个基于 POSIX 和 UNIX 的多用户、多任务、支持多线程和多 CPU 的操作系统。 …...

java面试题-泛型异常反射

泛型1.什么是泛型&#xff1f;Java是一种强类型语言&#xff0c;数据类型在编译时必须确定。如果我们想要在代码中使用不同类型的数据&#xff0c;那么就需要为每种类型分别写出相应的代码。这样会导致代码冗长、重复&#xff0c;也不便于维护。为了解决这个问题&#xff0c;Ja…...

详细解读ChatGPT:如何调用ChatGPT的API接口到官方例子的说明以及GitHub上的源码应用和csdn集成的ChatGPT

文章目录1. 解读ChatGPT1.1 词语解释1.2 功能解读2. GitHub上ChatGPT的应用源码3. 调用ChatGPT的API4. 官方例子说明5. 集成ChatGPT自ChatGPT出来到如今&#xff0c;始终走在火热的道路上&#xff0c;如今日活用户破亿&#xff0c;他为何有如此大的魅力&#xff0c;深受广大用户…...

九龙证券|最新评级情况出炉,机构扎堆这一板块!聚氨酯龙头获得最多关注

本周算计254家上市公司获组织“买入型”评级。 电子板块评级组织扎堆 证券时报数据宝计算&#xff0c;2月13日至17日&#xff0c;A股市场53家组织算计进行347次评级&#xff0c;254家上市公司获“买入型”评级&#xff08;包含买入、增持、强烈推荐、推荐&#xff09;。 从申…...

考研复试机试 | C++ | 尽量不要用python,很多学校不支持

目录1.1打印日期 &#xff08;清华大学上机题&#xff09;题目&#xff1a;代码&#xff1a;1.2改一改&#xff1a;上一题反过来问题代码&#xff1a;2.Day of Week &#xff08;上交&&清华机试题&#xff09;题目&#xff1a;代码&#xff1a;3.剩下的树&#xff08;清…...

ChatGPT时代,别再折腾孩子了

今天这篇完全是从两件事儿有感而发。昨天在文印店&#xff0c;在复印机上看到装订好的几页纸&#xff0c;我瞥了一眼&#xff0c;是历史知识点&#xff1a;隋朝大运河分为四段&#xff0c;分别是___ ___ ___ ___&#xff0c;连接了五大河___ ___ ___ ___ ______ 年&#xff…...

万字干货 | 荔枝魔方基于云原生的架构设计与实践

近年来&#xff0c;荔枝集团在国内和海外的业务迅速发展&#xff0c;业务数据规模也是成几何式地增长&#xff0c;海量数据的计算分析场景、业务智能算法应用需求随之而生&#xff0c;为了快速地满足业务发展的需要&#xff0c;我们面临着诸多的技术挑战。技术挑战工程问题资源…...

#科研筑基# python初学自用笔记 第九篇 面向对象编程

面向对象编程 Object Oriented Programming &#xff0c;简称OOP&#xff0c;是一种程序设计思想&#xff0c;这种思想把对象作为程序的基本单元。类是抽象的&#xff0c;对象是具体的&#xff0c;一种类包括其特定的数据或属性&#xff0c;以及操作数据的函数&#xff08;方法…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...