BZOJ4403 序列统计
题目描述
给定三个正整数N、L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量。输出答案对106+310^6+3106+3取模的结果。
输入
输入第一行包含一个整数T,表示数据组数。
第2到第T+1行每行包含三个整数N、L和R,N、L和R的意义如题所述。
1≤N,L,R≤10^9,1≤T≤100,输入数据保证L≤R。
输出
输出包含T行,每行有一个数字,表示你所求出的答案对106+310^6+3106+3取模的结果。
样例输入
2
1 4 5
2 4 5
样例输出
2
5
题解
前置知识:lucas定理
在区间[l,r][l,r][l,r]中长度为nnn的单调不降序列的数量,即Cr−l+1+n−1n=Cr−l+nnC_{r-l+1+n-1}^n=C_{r-l+n}^nCr−l+1+n−1n=Cr−l+nn个。
题意即求∑i=1nCr−l+ii\sum\limits_{i=1}^nC_{r-l+i}^ii=1∑nCr−l+ii。因为Cnm=Cnn−mC_n^m=C_n^{n-m}Cnm=Cnn−m,所以
∑i=1nCr−l+ii=∑i=1nCr−l+ir−l\sum\limits_{i=1}^nC_{r-l+i}^i=\sum\limits_{i=1}^nC_{r-l+i}^{r-l}i=1∑nCr−l+ii=i=1∑nCr−l+ir−l
又因为
∑i=mnCim=Cn+1m+1\sum\limits_{i=m}^nC_i^m=C_{n+1}^{m+1}i=m∑nCim=Cn+1m+1
所以
∑i=1nCr−l+ir−l=(∑i=0nCr−l+ir−l)−1=Cr−l+n+1r−l+1−1=Cr−l+n+1n−1\sum\limits_{i=1}^nC_{r-l+i}^{r-l}=(\sum\limits_{i=0}^nC_{r-l+i}^{r-l})-1=C_{r-l+n+1}^{r-l+1}-1=C_{r-l+n+1}^n-1i=1∑nCr−l+ir−l=(i=0∑nCr−l+ir−l)−1=Cr−l+n+1r−l+1−1=Cr−l+n+1n−1
Cr−l+n+1n−1C_{r-l+n+1}^n-1Cr−l+n+1n−1即为答案,用lucas定理求出即可。
code
#include<bits/stdc++.h>
using namespace std;
int n;
long long vt=1,x,y,ans=0,a[15],b[15];
void exgcd(long long c,long long d){if(d==0){x=1;y=0;return;}exgcd(d,c%d);long long t=x;x=y;y=t-c/d*y;
}
int main()
{scanf("%d",&n);for(int i=1;i<=n;i++){scanf("%lld%lld",&a[i],&b[i]);vt=vt*a[i];}for(int i=1;i<=n;i++){exgcd(vt/a[i],a[i]);x=(x%a[i]+a[i])%a[i];ans=(ans+vt/a[i]*b[i]*x%vt)%vt;}printf("%lld",ans);return 0;
}
相关文章:
BZOJ4403 序列统计
题目描述 给定三个正整数N、L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量。输出答案对106310^631063取模的结果。 输入 输入第一行包含一个整数T,表示数据组数。 第2到第T1行每行包含三个整数N、L和R,N、…...
如何正确使用 钳位二极管
在电路设计中,经常遇到需要IO保护的场景,比如ADC采样,GPIO接收电平信号等。 常见的保护方法有分压,限幅,限流等。本次我们讨论限幅方法中的 钳位二极管。 我们以BAT54S为例,它的符号是这样的, 而在很多手册里,我们可以看到,一般是这样使用的: 因此,我设计了简化…...
【C语言进阶】动态内存管理
👦个人主页:Weraphael ✍🏻作者简介:目前是C语言学习者 ✈️专栏:C语言航路 🐋 希望大家多多支持,咱一起进步!😁 如果文章对你有帮助的话 欢迎 评论💬 点赞&a…...
第一批因ChatGPT坐牢的人,已经上路了
大家好,我是 Jack。 ChatGPT 的火爆有目共睹,有人靠着它赚了第一桶金,也有人靠着它即将吃上第一顿牢饭。 任何一件东西的火爆,总会给一些聪明人带来机会。 艾尔登法环火的时候,一堆淘宝卖魂的;羊了个羊火…...
Eclipse下Maven的集成
Eclipse下Maven的集成 2.1指定本地maven环境 参考:Eclipse的Maven创建_叶书文的博客-CSDN博客_eclipse创建maven项目 指定用本地maven指定maven仓库设置和地址2.2创建maven项目 1.新建 2.目录设置 3.坐标设置(随便写就行) 4.目录结构 2.3配置…...
Elasticsearch7学习笔记(尚硅谷)
文章目录一、ElasticSearch概述1、ElasticSearch是什么2、全文搜索引擎3、ElasticSearch 和 Solr3.1 概述3.2 比较总结二、Elasticsearch入门1、Elasticsearch安装1.1 下载使用1.2 数据格式2、索引操作3、文档操作(了解)3.1 创建文档3.2 文档查询3.3 文档…...
前端学习第一阶段-第7章 品优购电商项目
7-1 品优购项目介绍及准备工作 01-品优购项目导读 02-网站制作流程 03-品优购项目规划 04-品优购项目搭建 05-品优购项目-样式的模块化开发 06-品优购项目-favicon图标制作 07-品优购项目-TDK三大标签SEO优化 7-2 首页Header区域实现 08-品优购首页-快捷导航shortcut结构搭建 0…...
cocos2dx 4.0 - cpp - pc版 环境搭建
开发环境vs2022 cocos2dx4.0 python2.7.18 cmake3.25安装教程(环境搭建)安装VS2022-Community, 勾选c进行安装安装cmake3.25, 勾选环境变量进行安装安装python2.7.18, 勾选环境变量进行安装下载cocos2dx4.0并解压配置cocos2dx:运行cmd,进入…...
剑指 Offer 53 - I. 在排序数组中查找数字 I
原题链接 难度:easy\color{Green}{easy}easy 题目描述 统计一个数字在排序数组中出现的次数。 示例 1: 输入: nums [5,7,7,8,8,10], target 8 输出: 2示例 2: 输入: nums [5,7,7,8,8,10], target 6 输出: 0提示: 0<nums.length<1050 <…...
华为OD机试 - 删除指定目录(Python) | 机试题算法思路 【2023】
最近更新的博客 华为OD机试 - 热点网络统计 | 备考思路,刷题要点,答疑 【新解法】 华为OD机试 - 查找单入口空闲区域 | 备考思路,刷题要点,答疑 【新解法】 华为OD机试 - 好朋友 | 备考思路,刷题要点,答疑 【新解法】 华为OD机试 - 找出同班小朋友 | 备考思路,刷题要点…...
PowerShell Install Office 2021 Pro Plus Viso Professional
前言 微软Office在很长一段时间内都是最常用和最受欢迎的软件。从小型创业公司到大公司,它的使用比例相当。它可以很容易地从微软的官方网站下载。但是,微软只提供安装程序,而不提供完整的软件供下载。这些安装文件通常比较小。下载并运行后,安装的文件将从后端服务器安装M…...
KubeSphere实战
文章目录一、KubeSphere平台安装1、Kubernetes上安装KubeSphere1.1 安装docker1.2 安装Kubernetes1.3 前置环境之nfs存储1.4 前置环境之metrics-server1.5 安装KubeSphere2、Linux单节点部署KubeSphere3、Linux多节点部署KubeSphere(推荐)二、KubeSphere实战1、多租户实战2、中…...
Linux 简介
Linux 内核最初只是由芬兰人林纳斯托瓦兹(Linus Torvalds)在赫尔辛基大学上学时出于个人爱好而编写的。 Linux 是一套免费使用和自由传播的类 Unix 操作系统,是一个基于 POSIX 和 UNIX 的多用户、多任务、支持多线程和多 CPU 的操作系统。 …...
java面试题-泛型异常反射
泛型1.什么是泛型?Java是一种强类型语言,数据类型在编译时必须确定。如果我们想要在代码中使用不同类型的数据,那么就需要为每种类型分别写出相应的代码。这样会导致代码冗长、重复,也不便于维护。为了解决这个问题,Ja…...
详细解读ChatGPT:如何调用ChatGPT的API接口到官方例子的说明以及GitHub上的源码应用和csdn集成的ChatGPT
文章目录1. 解读ChatGPT1.1 词语解释1.2 功能解读2. GitHub上ChatGPT的应用源码3. 调用ChatGPT的API4. 官方例子说明5. 集成ChatGPT自ChatGPT出来到如今,始终走在火热的道路上,如今日活用户破亿,他为何有如此大的魅力,深受广大用户…...
九龙证券|最新评级情况出炉,机构扎堆这一板块!聚氨酯龙头获得最多关注
本周算计254家上市公司获组织“买入型”评级。 电子板块评级组织扎堆 证券时报数据宝计算,2月13日至17日,A股市场53家组织算计进行347次评级,254家上市公司获“买入型”评级(包含买入、增持、强烈推荐、推荐)。 从申…...
考研复试机试 | C++ | 尽量不要用python,很多学校不支持
目录1.1打印日期 (清华大学上机题)题目:代码:1.2改一改:上一题反过来问题代码:2.Day of Week (上交&&清华机试题)题目:代码:3.剩下的树(清…...
ChatGPT时代,别再折腾孩子了
今天这篇完全是从两件事儿有感而发。昨天在文印店,在复印机上看到装订好的几页纸,我瞥了一眼,是历史知识点:隋朝大运河分为四段,分别是___ ___ ___ ___,连接了五大河___ ___ ___ ___ ______ 年ÿ…...
万字干货 | 荔枝魔方基于云原生的架构设计与实践
近年来,荔枝集团在国内和海外的业务迅速发展,业务数据规模也是成几何式地增长,海量数据的计算分析场景、业务智能算法应用需求随之而生,为了快速地满足业务发展的需要,我们面临着诸多的技术挑战。技术挑战工程问题资源…...
#科研筑基# python初学自用笔记 第九篇 面向对象编程
面向对象编程 Object Oriented Programming ,简称OOP,是一种程序设计思想,这种思想把对象作为程序的基本单元。类是抽象的,对象是具体的,一种类包括其特定的数据或属性,以及操作数据的函数(方法…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
