当前位置: 首页 > news >正文

Spark中使用RDD算子GroupBy做词频统计的方法

测试文件及环境

测试文件在本地D://tmp/spark.txt,Spark采用Local模式运行,Spark版本3.2.0,Scala版本2.12,集成idea开发环境。

hello
world
java
world
java
java

实验代码

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}object GroupBy {def main(args: Array[String]): Unit = {// 创建Spark执行环境val sparkConf: SparkConf =new SparkConf().setMaster("local").setAppName("GroupBy")// 新建会话val sc = new SparkContext(sparkConf)// 读取本地文件到RDDval rdd: RDD[String] = sc.textFile("D://tmp/spark.txt")// 对rdd做map映射,返回(hello,1)...val rdd2: RDD[(String, Int)] = rdd.map(v => {val arr: Array[String] = v.split("\t")(arr(0), 1)})// 打印map映射结果rdd2.foreach(v=>println(v))// 对rdd2进行groupBy操作val rdd3: RDD[(String, Iterable[(String, Int)])] = rdd2.groupBy(v => v._1)// 遍历打印最终结果rdd3.map(v => (v._1, v._2.size)).foreach(v => println(v))//结束Spark会话sc.stop()}
}

实验结果

打印map映射结果

(hello,1)
(world,1)
(java,1)
(world,1)
(java,1)
(java,1)
(hello,1)
(java,3)
(world,2)

相关文章:

Spark中使用RDD算子GroupBy做词频统计的方法

测试文件及环境 测试文件在本地D://tmp/spark.txt,Spark采用Local模式运行,Spark版本3.2.0,Scala版本2.12,集成idea开发环境。 hello world java world java java实验代码 import org.apache.spark.rdd.RDD import org.apache.…...

如何使用Kafka构建事件驱动的架构

事件驱动的架构(EDA)是一种软件设计模式,它关注事件的生成、检测和使用,以支持高效和可扩展的系统。在EDA中,事件是组件之间通信的主要手段,允许它们实时交互和响应更改。这种架构促进了松散耦合、可扩展性和响应性,使…...

ES6 解构赋值

解构赋值 解构赋值是一种在编程中常见且方便的语法特性,它可以让你从数组或对象中快速提取数据,并将数据赋值给变量。在许多编程语言中都有类似的特性。 在 JavaScript 中,解构赋值使得从数组或对象中提取数据变得简单。它可以用于数组和对…...

HTML5注册页面

分析 注册界面实际上是一个表格&#xff08;对齐&#xff09;&#xff0c;一行有两个单元格。 代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevic…...

python中的JSON模块详解

简介 JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式&#xff0c;它使得人们很容易的进行阅读和编写 同时也方便了机器进行解析和生成。适用于进行数据交互的场景&#xff0c;比如网站前台与后台之间的数据交互 网址 官方文档 json — JSON encoder and dec…...

Syncfusion Essential Edit for WPF Crack

Syncfusion Essential Edit for WPF Crack 在任何WPF应用程序中启用语法高亮显示。 Syncfusion Essential Edit for WPF是一款具有所有基本功能的编辑器&#xff0c;如文本编辑、剪切、复制和粘贴。它允许用户从各种文件格式打开文件并将其保存为各种文件格式。Syncfusion Esse…...

机器学习深度学习——卷积神经网络(LeNet)

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位即将上大四&#xff0c;正专攻机器学习的保研er &#x1f30c;上期文章&#xff1a;机器学习&&深度学习——池化层 &#x1f4da;订阅专栏&#xff1a;机器学习&&深度学习 希望文章对你们有所帮助 卷积神…...

Pytorch Tutorial【Chapter 2. Autograd】

Pytorch Tutorial 文章目录 Pytorch TutorialChapter 2. Autograd1. Review Matrix Calculus1.1 Definition向量对向量求导1.2 Definition标量对向量求导1.3 Definition标量对矩阵求导 2.关于autograd的说明3. grad的计算3.1 Manual手动计算3.2 backward()自动计算 Reference C…...

Python第三方库国内镜像下载地址

Python第三方库国内镜像下载地址 一、清华大学二、中国科技大学三、安装方法 一、清华大学 https://pypi.tuna.tsinghua.edu.cn/simple 二、中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple 三、安装方法 例如 pyhook3 插件的安装方法&#xff0c;执行下面命令安装…...

从浏览器输入url到页面加载(七)服务端机器一般部署在哪里

前言 上一节&#xff0c;我们说到了CDN和路由器的关系&#xff0c;说到了公有地址&#xff0c;说到了通信线路服务&#xff0c;这一节跳过那些看不懂的深层知识&#xff0c;直接开始说web服务器。 1. 服务端机器为什么不部署在公司内部 记得在之前的一段时间里&#xff0c;公…...

Pytorch深度学习-----神经网络之Sequential的详细使用及实战详解

系列文章目录 PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用&#xff08;ToTensor&#xff0c;Normalize&#xff0c;Resize &#xff0c;Co…...

安全基础 --- https详解 + 数组(js)

CIA三属性&#xff1a;完整性&#xff08;Confidentiality&#xff09;、保密性&#xff08;Integrity&#xff09;、可用性&#xff08;Availability&#xff09;&#xff0c;也称信息安全三要素。 https 核心技术&#xff1a;用非对称加密传输对称加密的密钥&#xff0c;然后…...

vue加载大量数据优化

在Vue中加载大量数据并形成列表时&#xff0c;可以通过以下方法来优化性能&#xff1a; 分页加载&#xff1a;不要一次性加载所有的数据&#xff0c;而是分批加载数据&#xff0c;每次只加载当前页需要显示的数据量。可以使用第三方库如vue-infinite-loading来实现无限滚动加载…...

WebRTC 之音视频同步

在网络视频会议中&#xff0c; 我们常会遇到音视频不同步的问题&#xff0c; 我们有一个专有名词 lip-sync 唇同步来描述这类问题&#xff0c;当我们看到人的嘴唇动作与听到的声音对不上的时候&#xff0c;不同步的问题就出现了 而在线会议中&#xff0c; 听见清晰的声音是优先…...

kubernetes基于helm部署gitlab-runner

kubernetes基于helm部署gitlab-runner 这篇博文介绍如何在 Kubernetes 中使用helm部署 GitLab-runner。 先决条件&#xff1a; 已运行的 Kubernetes 集群已运行的 gitlab 实例 项目地址&#xff1a;https://gitlab.com/gitlab-org/charts/gitlab-runner 官方文档&#xff…...

深度学习和OpenCV的对象检测(MobileNet SSD图像识别)

基于深度学习的对象检测时,我们主要分享以下三种主要的对象检测方法: Faster R-CNN(后期会来学习分享)你只看一次(YOLO,最新版本YOLO3,后期我们会分享)单发探测器(SSD,本节介绍,若你的电脑配置比较低,此方法比较适合R-CNN是使用深度学习进行物体检测的训练模型; 然而,…...

Gitlab CI/CD笔记-第一天-GitOps和以前的和jenkins的集成的区别

一、GitOps-CI/CD的流程图与Jenkins的流程图 从上图可以看到&#xff1a; GitOps与基于Jennkins技术栈的CI/CD流程&#xff0c;无法从Jenkins集成其他第三方开源的项目来实现换成了Gitlab来进行集成。 好处在于&#xff1a;CI 一个工具Gitlab就行了&#xff0c;但CD部分依旧是…...

有关OpenBSD, NetBSD, FreeBSD -- 与GPT对话

1 介绍一下 - OpenBSD, NetBSD, FreeBSD 当谈论操作系统时,OpenBSD、NetBSD和FreeBSD都是基于BSD(Berkeley Software Distribution)的操作系统,它们各自是独立开发的,并在BSD许可下发布。这些操作系统有很多共同点,但也有一些差异。以下是对它们的简要介绍: OpenBSD: O…...

RabbitMQ 备份交换机和死信交换机

为处理生产者生产者将消息推送到交换机中&#xff0c;交换机按照消息中的路由键即自身策略无法将消息投递到指定队列中造成消息丢失的问题&#xff0c;可以使用备份交换机。 为处理在消息队列中到达TTL的过期消息&#xff0c;可采用死信交换机进行消息转存。 通过上述描述可知&…...

Linux 中利用设备树学习Ⅳ

系列文章目录 第一章 Linux 中内核与驱动程序 第二章 Linux 设备驱动编写 &#xff08;misc&#xff09; 第三章 Linux 设备驱动编写及设备节点自动生成 &#xff08;cdev&#xff09; 第四章 Linux 平台总线platform与设备树 第五章 Linux 设备树中pinctrl与gpio&#xff08;…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...