当前位置: 首页 > news >正文

【LeetCode】240.搜索二维矩阵Ⅱ

题目

编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:

  • 每行的元素从左到右升序排列。
  • 每列的元素从上到下升序排列。

示例 1:

输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
输出:true

示例 2:

输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
输出:false

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= n, m <= 300
  • -10^9 <= matrix[i][j] <= 10^9
  • 每行的所有元素从左到右升序排列
  • 每列的所有元素从上到下升序排列
  • -10^9 <= target <= 10^9

解答

源代码

class Solution {public boolean searchMatrix(int[][] matrix, int target) {return dfs(matrix, 0, matrix[0].length - 1, target);}public boolean dfs(int[][] matrix, int i, int j, int target) {if (i >= matrix.length || j < 0) {return false;}if (matrix[i][j] == target) {return true;} else if (matrix[i][j] > target) {return dfs(matrix, i, j - 1, target);} else {return dfs(matrix, i + 1, j, target);}}
}

总结

想用递归,但重点在于递归的起点在哪里。一开始我把递归的起点定在了左上角,这样做出来的算法其实比暴力破解还糟糕;把起点定在右上角才是正确的选择,此时当前元素的左边都比它小,下边都比它大。

相关文章:

【LeetCode】240.搜索二维矩阵Ⅱ

题目 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性&#xff1a; 每行的元素从左到右升序排列。每列的元素从上到下升序排列。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,…...

SED正则表达式中[方括号]的特殊处理

今天被这个方括号懵晕了&#xff0c;特此记录 例如&#xff1a; 去除输入字符串“1[2.3]4[ab,c]”中的所有方括号和逗号&#xff1a; $ echo "1[2.3]4[ab,c]"|sed -e "s/[,\]\[]//g" 1[2.3]4[ab,c] It doesnt work! 原因&#xff1a;Regular Expressi…...

Android 音频开发

在Android平台上进行音频开发&#xff0c;您需要掌握以下关键知识点&#xff1a; Android平台基础知识&#xff1a;熟悉Android操作系统的基本架构、组件和应用开发的基本概念。 音频API&#xff1a;了解Android提供的音频相关API&#xff0c;主要包括android.media.AudioReco…...

Java8新特性,Lambda,Stream流

Java8新特性,Lambda,Stream流 Java8版本在2014年3月18日发布&#xff0c;为Java语言添加了很多重要的新特性。新特性包括&#xff1a;Lambda表达式、方法引用、默认方法、新的时间日期API、Stream API、Optional类等等。这些新特性大大增强了Java语言的表达能力&#xff0c;使…...

模型训练之train.py代码解析

题目 作者:安静到无声 个人主页 from __future__ import absolute_import from __future__ import division from __future__ import print_function这段代码使用了Python 2.x的__future__模块来导入Python 3.x的一些特性。在Python 2.x中,使用print语句来输出内容,而在Py…...

linux 复习

vim 使用 一般模式 、 命令模式、编辑模式 esc 进入一般模式 i 进入编辑模式 shift: 进入命令模式 yy p 复制粘贴 5yy 复制当前开始的5行 dd 删除 5dd 删除当前开始的5行 u撤销操作 ctrlr 恢复 shiftg 滚动最底部 gg 滚动最顶 输入数字 然后shiftg 跳转到指定行 用户操作…...

C语言刷题------(2)

C语言刷题——————&#xff08;2&#xff09; 刷题网站&#xff1a;题库 - 蓝桥云课 (lanqiao.cn) First Question&#xff1a;时间显示 题目描述 小蓝要和朋友合作开发一个时间显示的网站。 在服务器上&#xff0c;朋友已经获取了当前的时间&#xff0c;用一个整数表…...

JVM 之 OopMap 和 RememberedSet

前几天看周志明的《深入 Java 虚拟机》&#xff0c;感觉对 OopMap 和 RememberedSet 的介绍&#xff0c;看起来不太容易理解清楚。今天查了一些资料&#xff0c;并结合自己的一些猜想&#xff0c;把对这两种数据结构的理解写出来。目的只是为了简单易懂&#xff0c;而且多有推测…...

Original error: gsmCall method is only available for emulators

在夜神模拟器执行报错 self.driver.make_gsm_call(5551234567, GsmCallActions.CALL)意思是gsmCall这个命令不支持&#xff0c;只支持下面这些命令 selenium.common.exceptions.UnknownMethodException: Message: Unknown mobile command "gsmCall". Only shell,exe…...

React Native从文本内容尾部截取显示省略号

<Textstyle{styles.mMeNickname}ellipsizeMode"tail"numberOfLines{1}>{userInfo.nickname}</Text> 参考链接&#xff1a; https://www.reactnative.cn/docs/text#ellipsizemode https://chat.xutongbao.top/...

机器学习笔记之优化算法(十一)凸函数铺垫:梯度与方向导数

机器学习笔记之优化算法——凸函数铺垫&#xff1a;梯度与方向导数 引言回顾&#xff1a;偏导数方向余弦方向导数方向导数的几何意义方向导数的定义 方向导数与偏导数之间的关联关系证明过程 梯度 ( Gradient ) (\text{Gradient}) (Gradient) 引言 本节作为介绍凸函数的铺垫&a…...

探究Vue源码:mustache模板引擎(11) 递归处理循环逻辑并收尾算法处理

好 在上文 探究Vue源码:mustache模板引擎(10) 解决不能用连续点符号找到多层对象问题&#xff0c;为编译循环结构做铺垫 我们解决了js字符串没办法通过 什么点什么拿到对象中的值的问题 这个大家需要记住 因为这个方法的编写之前是当做面试题出现过的 那么 本文 我们就要去写上…...

STM32 CubeMX USB_CDC(USB_转串口)

STM32 CubeMX STM32 CubeMX 定时器&#xff08;普通模式和PWM模式&#xff09; STM32 CubeMX一、STM32 CubeMX 设置USB时钟设置USB使能UBS功能选择 二、代码部分添加代码实验效果 ![请添加图片描述](https://img-blog.csdnimg.cn/a7333bba478441ab950a66fc63f204fb.png)printf发…...

机器学习——卷积神经网络基础

卷积神经网络&#xff08;Convolutional Neural Network&#xff1a;CNN&#xff09; 卷积神经网络是人工神经网络的一种&#xff0c;是一种前馈神经网络。最早提出时的灵感来源于人类的神经元。 通俗来讲&#xff0c;其主要的操作就是&#xff1a;接受输入层的输入信息&…...

端到端自动驾驶前沿论文盘点(pdf+代码)

现在的自动驾驶&#xff0c;大多数还是采用的模块化架构&#xff0c;但这种架构的缺陷十分明显&#xff1a;在一个自动驾驶系统里&#xff0c;可能会包含很多个模型&#xff0c;每个模型都要专门进行训练、优化、迭代&#xff0c;随着模型的不断进化&#xff0c;参数量不断提高…...

2023年中期奶粉行业分析报告(京东数据开放平台)

根据国家统计局和民政部数据公布&#xff0c;2022年中国结婚登记数创造了1980年&#xff08;有数据公布&#xff09;以来的历史新低&#xff0c;共计683.3万对。相较于2013年巅峰时期的数据&#xff0c;2022年全国结婚登记对数已接近“腰斩”。 2023年“520”期间的结婚登记数…...

web集群学习:基于CentOS 7构建 LVS-DR 群集并配置服务启动脚本

目录 1、环境准备 2、配置lvs服务启动脚本 1、在RS上分别配置服务启动脚本 2、在lvs director上配置服务启动脚本 3、客户端测试 配置LVS-DR模式主要注意的有 1、vip绑定在RS的lo接口&#xff1b; 2、RS做arp抑制&#xff1b; 1、环境准备 VIP192.168.95.10 RS1192.168…...

Flask 高级应用:使用蓝图模块化应用和 JWT 实现安全认证

本文将探讨 Flask 的两个高级特性&#xff1a;蓝图&#xff08;Blueprints&#xff09;和 JSON Web Token&#xff08;JWT&#xff09;认证。蓝图让我们可以将应用模块化&#xff0c;以便更好地组织代码&#xff1b;而 JWT 认证是现代 Web 应用中常见的一种安全机制。 一、使用…...

【Grafana】中文界面配置 v10.0.3

比如通过 docker run -d -p 3000:3000 -v /e/code/monitor/grafana/grafana.ini.txt:/etc/grafana/grafana.ini grafana/grafana运行一个容器&#xff08;最新是v10.0.3&#xff09;。 在 /admin/settings 可以看到 users 部分有一个 default_language 配置。 所以在挂载到 …...

web前端html

文章目录 快捷方式一、html5的声明二、html5基本骨架 2.1 html标签 2.2 head标签 2.3 body和head同级 2.4 body标签 2.5 title标签 2.6 meta标签 三、标题标签介绍与应用 3.1 标题的介绍 3.2 标题标签位置摆放 3.3 标签之段落、换行、水平线 3.3 标签之图片 3.3.1 图…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...