当前位置: 首页 > news >正文

【雷达通信】非相干多视处理(CSA)(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

“在SAR系统中,多个独立的视可以由飞行载体以不同的方位角通过观察点时天。
一视由天线沿方位向第一个前向四分之一波束部分产生,下一视则来自下一个四分之一波束,
以此类推。然后,由于来自波束各部分的信号到达雷达接收机是重叠在一起的,所
以在时域或者空域上无法对数据进行分离。然而,具有高方位时间带宽积的一个实用SAR系
统是将时间和频率两者绑定在一起的,在多普勒域内包含了各视的所有信息。也就是说,具
有较高多普勒频率的数据一定是由方位向波束前缘触及到的地形点产生的,而当同一地点出
在方位波束后缘四分之一时,产生了多普勒频段低四分之一部分。”[1]

非相干多视处理(Coherent Sum and Average, CSA)是一种用于雷达通信的信号处理技术。在雷达通信中,使用多个接收机来接收从目标反射回来的信号。CSA技术将多个接收到的信号进行处理,以提高信号的质量和可靠性。

CSA技术的基本思想是利用信号的非相干性质来降低噪声的影响。当多个接收机接收到相同的信号时,由于噪声是随机的,它们在接收到信号时的相位和幅度会有所不同。通过将多个接收到的信号进行相加与平均,可以抵消掉噪声的影响,从而提高信号的信噪比。

CSA技术的具体实现包括以下步骤:
1. 将多个接收机接收到的信号进行对齐,即校准它们的时间延迟和相位差。
2. 将对齐后的信号进行相加,以增强信号的幅度。
3. 将相加后的信号进行平均,以降低噪声的影响。

通过采用CSA技术,可以显著提高雷达通信系统的性能和可靠性。它可以用于各种雷达通信应用,如雷达测距、雷达成像和雷达通信等。

需要注意的是,CSA技术虽然可以提高信号的质量,但也会增加系统的计算复杂性和延时。因此,在实际应用中需要权衡计算资源和性能要求。

📚2 运行结果

 

 

部分代码:

Kr = -Kr;                       % 将调频率Kr改成负值
BW_range = 30.111e+06;          % 脉冲宽度
Vr = 7062;                      % 有效雷达速率
Ka = 1733;                      % 方位调频率
fnc = -6900;                    % 多普勒中心频率
Fa = PRF;                       % 方位向采样率
lamda = c/f0;                   % 波长
T_start = 6.5959e-03;           % 数据窗开始时间

Nr = round(Tr*Fr);              % 线性调频信号采样点数
Nrg = Nrg_cells;                % 距离线采样点数
if b == 1 || b == 2
    Naz = Nrg_lines_blk;         % 每一个数据块的距离线数
else
    Naz = Nrg_lines;              % 两个数据块,总共的距离线数
end
NFFT_r = Nrg;                   % 距离向FFT长度
NFFT_a = Naz;                   % 方位向FFT长度

R_ref = R0;                     % 参考目标选在场景中心,其最近斜距为 R_ref  
fn_ref = fnc;                   % 参考目标的多普勒中心频率

%%
%
% --------------------------------------------------------------------
% 对原始数据进行补零
% --------------------------------------------------------------------
if b == 1 || b == 2 
    data = zeros(1*2048,3000);
else
    data = zeros(2*2048,3000);
end
data(1:Naz,1:Nrg) = s_echo;
clear s_echo;
s_echo = data;
clear data;
[Naz,Nrg] = size(s_echo);

NFFT_r = Nrg;                   % 距离向FFT长度
NFFT_a = Naz;                   % 方位向FFT长度

% 作图显示
figure;
imagesc(abs(s_echo));
title('补零后的原始数据');       % 补零后的原始回波数据(未处理)的幅度图像
%}

%%
% --------------------------------------------------------------------
% 距离(方位)向时间,频率相关定义
% --------------------------------------------------------------------
% 距离
tr = 2*R0/c + ( -Nrg/2 : (Nrg/2-1) )/Fr;                % 距离时间轴
fr = ( -NFFT_r/2 : NFFT_r/2-1 )*( Fr/NFFT_r );          % 距离频率轴
% 方位
ta = ( -Naz/2: Naz/2-1 )/Fa;                            % 方位时间轴
fa = fnc + fftshift( -NFFT_a/2 : NFFT_a/2-1 )*( Fa/NFFT_a );    % 方位频率轴

% 生成距离(方位)时间(频率)矩阵
tr_mtx = ones(Naz,1)*tr;    % 距离时间轴矩阵,大小:Naz*Nrg
ta_mtx = ta.'*ones(1,Nrg);  % 方位时间轴矩阵,大小:Naz*Nrg
fr_mtx = ones(Naz,1)*fr;    % 距离频率轴矩阵,大小:Naz*Nrg
fa_mtx = fa.'*ones(1,Nrg);  % 方位频率轴矩阵,大小:Naz*Nrg

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]《合成孔径雷达成像——算法与实现》 ,(美)卡明等著;洪文等译;电子工业出版社;

[2]《合成孔径雷达——系统与信号处理》 ,(美)柯兰德等著;韩传钊等译;电子工业出

版社

🌈4 Matlab代码实现

相关文章:

【雷达通信】非相干多视处理(CSA)(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

73. 矩阵置零

题目链接:力扣 解题思路: 方法一:比较容易想到的方向,使用两个数组row和col保存有0的行或者列,然后将有0的那一行或那一列的所有元素都设置为0 AC代码 class Solution {public void setZeroes(int[][] matrix) {in…...

‘大数据技术与应用’和‘数据科学与大数据技术’有什么区别

一、侧重点不同 ‘大数据技术与应用’主要侧重于大数据的存储、处理和分析技术、包括数据挖掘、机器学习、数据仓库、分布式计算等方面的研究,旨在开发大数据相关的应用程序和系统,以满足商业和企业的需求。 ‘数据科学与大数据技术’则更加注重数据本…...

没有jsoup,rust怎么解析html呢?

在 Rust 中,你可以使用各种库来解析网页内容。一个常用的库是 reqwest ,它提供了一个简单的方式来发送 HTTP 请求并获取网页内容。另外,你可以使用 scraper 或 select 等库来解析 HTML 或 XML 格式的网页内容。 下面是一个使用 reqwest 和 sc…...

【C高级】Day4 shell脚本 排序

1. 整理思维导图 2. 写一个函数&#xff0c;获取用户的uid和gid并使用变量接收 #!/bin/bash function getid() {uidid -ugidid -g }getid echo "uid$uid" echo "gid$gid"3. 整理冒泡排序、选择排序和快速排序的代码 #include <myhead.h>void Inp…...

大模型开发(十六):从0到1构建一个高度自动化的AI项目开发流程(中)

全文共1w余字&#xff0c;预计阅读时间约40~60分钟 | 满满干货(附代码)&#xff0c;建议收藏&#xff01; 本文目标&#xff1a;通过LtM提示流程实现自动构建符合要求的函数&#xff0c;并通过实验逐步完整测试code_generate函数功能。 代码下载点这里 一、介绍 此篇文章为…...

【深入了解pytorch】PyTorch强化学习:强化学习的基本概念、马尔可夫决策过程(MDP)和常见的强化学习算法

【深入了解pytorch】PyTorch强化学习:强化学习的基本概念、马尔可夫决策过程(MDP)和常见的强化学习算法 PyTorch强化学习:介绍强化学习的基本概念、马尔可夫决策过程(MDP)和常见的强化学习算法引言强化学习的基本概念状态(State)动作(Action)奖励(Reward)策略(Pol…...

尚硅谷张天禹Vue2+Vue3笔记(待续)

简介 什么是Vue&#xff1f; 一套用于构建用户界面的渐进式JavaScript框架。将数据转变成用户可看到的界面。 什么是渐进式&#xff1f; Vue可以自底向上逐层的应用 简单应用:只需一个轻量小巧的核心库 复杂应用:可以引入各式各样的Vue插件 Vue的特点是什么&#xff1f; 1.采…...

深度学习(35)—— StarGAN(2)

深度学习&#xff08;34&#xff09;—— StarGAN&#xff08;2&#xff09; 完整项目在这里&#xff1a;欢迎造访 文章目录 深度学习&#xff08;34&#xff09;—— StarGAN&#xff08;2&#xff09;1. build model&#xff08;1&#xff09;generator&#xff08;2&#…...

连续四年入选!三项荣耀!博云科技强势上榜Gartner ICT技术成熟度曲线

日&#xff0c;全球知名咨询公司Gartner发布了2023年度的《中国ICT技术成熟度曲线》&#xff08;《Hype Cycle for ICT in China, 2023》&#xff0c;以下简称“报告”&#xff09;。令人瞩目的是&#xff0c;博云科技在报告中荣获三项殊荣&#xff0c;入选云原生计算&#xff…...

Docker实战-操作Docker容器实战(一)

导语   在之前的分享中&#xff0c;我们介绍了关于如何去操作Docker镜像&#xff0c;下面我们来看看如何去操作容器。 简单来讲&#xff0c;容器是镜像运行的一个实例&#xff0c;与镜像不同的是镜像只能作为一个静态文件进行读取&#xff0c;而容器是可以在运行时进行写入操…...

c#设计模式-行为型模式 之 观察者模式

定义&#xff1a; 又被称为发布-订阅&#xff08;Publish/Subscribe&#xff09;模式&#xff0c;它定义了一种一对多的依赖关系&#xff0c;让多个观察者 对象同时监听某一个主题对象。这个主题对象在状态变化时&#xff0c;会通知所有的观察者对象&#xff0c;使他们能够自 …...

开窗积累之学习更新版

1. 开窗使用1之 count range between current row and current row 将相同排序字段的值进行函数计算 selectsku_id,substr(create_date,1,7) date_month,order_id,create_date,sku_num*price,sum(sku_num*price) over (partition by sku_id order by substr(create_date,1,7)…...

ffplay简介

本文为相关课程的学习记录&#xff0c;相关分析均来源于课程的讲解&#xff0c;主要学习音视频相关的操作&#xff0c;对字幕的处理不做分析 ffplay播放器的意义 ffplay.c是FFmpeg源码⾃带的播放器&#xff0c;调⽤FFmpeg和SDL API实现⼀个⾮常有⽤的播放器。 ffplay实现了播…...

mysql之limit语句详解

一、介绍 LIMIT是MySQL内置函数&#xff0c;其作用是用于限制查询结果的条数。 二、使用 1. 语法格式 LIMIT [位置偏移量,] 行数 其中&#xff0c;中括号里面的参数是可选参数&#xff0c;位置偏移量是指MySQL查询分析器要从哪一行开始显示&#xff0c;索引值从0开始&#xff…...

4.while循环

1、while语句的语法结构如下&#xff1a; while语句可以在条件表达式为真的前提下&#xff0c;循环执行指定的一段代码&#xff0c;直到表达式不为真时结束循环。 1.1while语法结构 while(条件表达式){// 循环体} 执行思路&#xff1a; 1、执行思路 当条件表达式结果为tru…...

【雕爷学编程】 MicroPython动手做(35)——体验小游戏2

知识点&#xff1a;什么是掌控板&#xff1f; 掌控板是一块普及STEAM创客教育、人工智能教育、机器人编程教育的开源智能硬件。它集成ESP-32高性能双核芯片&#xff0c;支持WiFi和蓝牙双模通信&#xff0c;可作为物联网节点&#xff0c;实现物联网应用。同时掌控板上集成了OLED…...

mouseover 和 mouseenter

mouseover 和 mouseenter 事件是 JavaScript 中常用的两个鼠标事件&#xff0c;它们有一些区别&#xff1a; 触发条件: mouseover 事件在鼠标指针从元素外部进入元素内部时触发&#xff0c;包括子元素。换句话说&#xff0c;只要鼠标进入元素或其子元素&#xff0c;就会触发 mo…...

[JavaScript游戏开发] 绘制Q版地图、键盘上下左右地图场景切换

系列文章目录 第一章 2D二维地图绘制、人物移动、障碍检测 第二章 跟随人物二维动态地图绘制、自动寻径、小地图显示(人物红点显示) 第三章 绘制冰宫宝藏地图、人物鼠标点击移动、障碍检测 第四章 绘制Q版地图、键盘上下左右地图场景切换 文章目录 系列文章目录前言一、本章节…...

CI/CD持续集成持续发布(jenkins)

1.背景 在实际开发中&#xff0c;我们经常要一边开发一边测试&#xff0c;当然这里说的测试并不是程序员对自己代码的单元测试&#xff0c;而是同组程序员将代码提交后&#xff0c;由测试人员测试&#xff1b; 或者前后端分离后&#xff0c;经常会修改接口&#xff0c;然后重新…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

第八部分:阶段项目 6:构建 React 前端应用

现在&#xff0c;是时候将你学到的 React 基础知识付诸实践&#xff0c;构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段&#xff0c;你可以先使用模拟数据&#xff0c;或者如果你的后端 API&#xff08;阶段项目 5&#xff09;已经搭建好&#xff0c;可以直接连…...

Netty自定义协议解析

目录 自定义协议设计 实现消息解码器 实现消息编码器 自定义消息对象 配置ChannelPipeline Netty提供了强大的编解码器抽象基类,这些基类能够帮助开发者快速实现自定义协议的解析。 自定义协议设计 在实现自定义协议解析之前,需要明确协议的具体格式。例如,一个简单的…...

Redis——Cluster配置

目录 分片 一、分片的本质与核心价值 二、分片实现方案对比 三、分片算法详解 1. ‌范围分片&#xff08;顺序分片&#xff09;‌ 2. ‌哈希分片‌ 3. ‌虚拟槽分片&#xff08;Redis Cluster 方案&#xff09;‌ 四、Redis Cluster 分片实践要点 五、经典问题解析 C…...

RocketMQ 客户端负载均衡机制详解及最佳实践

延伸阅读&#xff1a;&#x1f50d;「RocketMQ 中文社区」 持续更新源码解析/最佳实践&#xff0c;提供 RocketMQ 专家 AI 答疑服务 前言 本文介绍 RocketMQ 负载均衡机制&#xff0c;主要涉及负载均衡发生的时机、客户端负载均衡对消费的影响&#xff08;消息堆积/消费毛刺等…...

Docker 镜像上传到 AWS ECR:从构建到推送的全流程

一、在 EC2 实例中安装 Docker&#xff08;适用于 Amazon Linux 2&#xff09; 步骤 1&#xff1a;连接到 EC2 实例 ssh -i your-key.pem ec2-useryour-ec2-public-ip步骤 2&#xff1a;安装 Docker sudo yum update -y sudo amazon-linux-extras enable docker sudo yum in…...