【C++】开源:ceres和g2o非线性优化库配置使用
😏★,°:.☆( ̄▽ ̄)/$:.°★ 😏
这篇文章主要介绍ceres和g2o非线性优化库配置使用。
无专精则不能成,无涉猎则不能通。——梁启超
欢迎来到我的博客,一起学习,共同进步。
喜欢的朋友可以关注一下,下次更新不迷路🥞
文章目录
- :smirk:1. 项目介绍
- :blush:2. 环境配置
- :satisfied:3. 使用说明
😏1. 项目介绍
ceres项目Github地址:https://github.com/ceres-solver/ceres-solver
ceres项目Github地址:https://github.com/RainerKuemmerle/g2o
Ceres Solver和g2o都是用于求解非线性最小二乘问题的C++库,主要用于图优化等领域。它们有一些共同点,但也有一些区别。
Ceres Solver:
- Ceres Solver是一个功能强大的C++库,专门用于求解大规模稀疏和稠密非线性最小二乘问题。
- 它支持各种类型的误差函数,如光束法平差、非线性回归、SLAM、视觉定位等。
- Ceres Solver提供了多种优化算法,包括LM(Levenberg-Marquardt)、GN(Gauss-Newton)等,并且可根据问题特点进行自定义优化策略。
- 它具有灵活的接口和标准化的问题表示方式,可以轻松地与其他库进行集成。
- Ceres Solver支持自动求导,可以通过使用用户提供的误差函数的解析梯度或数值微分来计算导数。
- Ceres Solver是开源的,遵循BSD许可证。
g2o:
- g2o是一个通用的C++库,用于求解图优化问题,例如视觉SLAM、3D重建、机器人运动估计等。
- g2o支持稀疏矩阵和滤波器算法,并提供了灵活的接口和模块化设计。
- 它支持多种顶点和边类型,并允许用户自定义顶点、边类型和优化策略。
- g2o提供了多种优化算法,如GN(Gauss-Newton)、LM(Levenberg-Marquardt)等。
- g2o也是开源的,遵循BSD许可证。
Ceres Solver和g2o在SLAM、机器人运动估计等领域得到了广泛应用。
😊2. 环境配置
下面进行环境配置:
ceres:
# 安装依赖
sudo apt install cmake libgoogle-glog-dev libgflags-dev libatlas-base-dev libsuitesparse-dev -y
# ceres-1.14
wget ceres-solver.org/ceres-solver-1.14.0.tar.gz
tar -zxvf ceres-solver-1.14.0.tar.gz
cd ceres-solver-1.14.0
mkdir build && cd build
cmake .. && make
sudo make install
g2o:
# 安装依赖
sudo apt-get install libeigen3-dev libsuitesparse-dev qt5-qmake libqglviewer-dev-qt5
git clone https://github.com/RainerKuemmerle/g2o.git
cd g2o
mkdir build && cd build
cmake .. && make
sudo make install
😆3. 使用说明
下面进行使用分析:
ceres:
构建代价函数Cost_Functor:
// 定义一个实例化时才知道的类型T
template <typename T>// 运算符()的重载,用来得到残差fi
bool operator()(const T* const x, T* residual) const {residual[0] = T(10.0) - x[0];return true;}
构建最小二乘问题problem:
Problem problem;
CostFunction* cost_function = new AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor);
problem.AddResidualBlock(cost_function, NULL, &x);
求解器参数配置Solver:
Solver::Options options;
options.linear_solver_type = ceres::DENSE_QR;
options.minimizer_progress_to_stdout = true;
Solver::Summary summary;
Solve(options, &problem, &summary);
cout << summary.BriefReport() << "\n";//输出优化的简要信息
用Ceres Solver库解决一个简单的非线性最小二乘问题示例:
#include <iostream>
#include <ceres/ceres.h>// 代价函数类定义
struct CostFunctor {template <typename T>bool operator()(const T* const x, T* residual) const {// 定义目标函数:f(x) = 10 - xresidual[0] = T(10.0) - x[0];return true;}
};int main(int argc, char** argv) {// 初始化问题ceres::Problem problem;// 添加一个残差块double initial_x = 5.0; // 初始值ceres::CostFunction* cost_function =new ceres::AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor);problem.AddResidualBlock(cost_function, nullptr, &initial_x);// 配置求解器选项ceres::Solver::Options options;options.linear_solver_type = ceres::DENSE_QR;options.minimizer_progress_to_stdout = true;// 求解问题ceres::Solver::Summary summary;ceres::Solve(options, &problem, &summary);// 打印结果std::cout << summary.BriefReport() << "\n";std::cout << "Final x = " << initial_x << "\n";return 0;
}
以上。
相关文章:

【C++】开源:ceres和g2o非线性优化库配置使用
😏★,:.☆( ̄▽ ̄)/$:.★ 😏 这篇文章主要介绍ceres和g2o非线性优化库配置使用。 无专精则不能成,无涉猎则不能通。——梁启超 欢迎来到我的博客,一起学习,共同进步。 喜欢的朋友可以关注一下&…...

OCR学习
...
《练习100》56~60
题目56 M 5 a [1, 2, 3, 4, 5] i 1 j M - 1 while i < M:# print(f"第{i1}轮交换前:i {i}, j {j} , a[{i}] {a[i]} , a[{j}] {a[j]}")a[i], a[j] a[j], a[i]# print(f"第{i1}轮交换后:i {i}, j {j} , a[{i}] {a[i]} , a[…...

基于大数据为底层好用准确性高的竞彩足球比分预测进球数分析软件介绍推荐
大数据与贝叶斯理论在足球比赛分析与预测中的应用 随着科技的不断进步,大数据分析在各个领域的应用也越来越广泛,其中包括体育竞技。足球比赛作为全球最受欢迎的运动之一,也借助大数据和贝叶斯理论来进行模型分析和预测。本文将通过结合贝叶…...

Django进阶
1.orm 1.1 基本操作 orm,关系对象映射。 类 --> SQL --> 表 对象 --> SQL --> 数据特点:开发效率高、执行效率低( 程序写的垃圾SQL )。 编写ORM操作的步骤: settings.py,连…...
Linux系统服务管理
服务命令比较 操作 Linux 6 Linux7 服务开机自动启动 chkconfig --level 35 iptables on systemctl enable firewalld.service 服务器开机不自动启动 chkconfig --level 35 iptables off systemctl disable firewalld.service 加入自定义服务 chkconfig --add aaa s…...

C#之控制台版本得贪吃蛇
贪吃蛇小时候大家都玩过,具体步骤如下: 1.给游戏制造一个有限得空间。 2.生成墙壁,小蛇碰撞到墙壁或者咬到自己的尾巴,游戏结束。 3.生成随机的食物。 4.吃掉食物,增加自身的体长,并生成新的食物。 具体代码如下&…...

ffplay数据结构分析(一)
本文为相关课程的学习记录,相关分析均来源于课程的讲解,主要学习音视频相关的操作,对字幕的处理不做分析 下面我们对ffplay的相关数据结构进行分析,本章主要是对PacketQueue的讲解 struct MyAVPacketList和PacketQueue队列 ffp…...

JavaWeb学习|JSP相关内容
1.什么是JSP Java Server Pages: Java服务器端页面,也和Servlet一样,用于动态Web技术! 最大的特点: 。写JSP就像在写HTML 。区别: 。HTML只给用户提供静态的数据 。JSP页面中可以嵌入JAVA代码,为用户提供动态数据 JSP最终也会被转换成为一…...

Springboot后端通过路径映射获取本机图片资源
项目场景: 项目中对图片的处理与查看是必不可少的,本文将讲解如何通过项目路径来获取到本机电脑的图片资源 如图所示,在我的本机D盘的图片测试文件夹(文件夹名字不要有中文)下有一些图片, 我们要在浏览器上访问到这些图片&#…...

【IDEA + Spark 3.4.1 + sbt 1.9.3 + Spark MLlib 构建鸢尾花决策树分类预测模型】
决策树进行鸢尾花分类的案例 背景说明: 通过IDEA Spark 3.4.1 sbt 1.9.3 Spark MLlib 构建鸢尾花决策树分类预测模型,这是一个分类模型案例,通过该案例,可以快速了解Spark MLlib分类预测模型的使用方法。 依赖 ThisBuild /…...

亚马逊 EC2服务器下部署java环境
1. jdk 1.8 安装 1.1 下载jdk包 官网 Java Downloads | Oracle tar.gz 包 下载下来 1.2 本地连接 服务器 我用的是亚马逊的ec2 系统是 ubuntu 的 ssh工具是 Mobaxterm , 公有dns 创建实例时的秘钥 链接 Mobaxterm 因为使用的 ubuntu 所以登录的 名称 就是 ubuntu 然后 …...

CTF流量题解http1.pcapng
使用Wireshark工具打开流量文件http1.pcapng,如下图所示。 在过滤检索栏输入http,wireshark自动进行过滤。...
若依vue前端有全局用户信息变量吗
"若依"是一个基于SpringBoot和Vue的前后端分离的开源项目。在前端Vue部分,全局用户信息通常保存在Vuex中,Vuex是Vue.js的状态管理模式。它提供了一个集中式存储来管理所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生…...

什么是Milvus
原文出处:https://www.yii666.com/blog/393941.html 什么是Milvus Milvus 是一款云原生向量数据库,它具备高可用、高性能、易拓展的特点,用于海量向量数据的实时召回。 Milvus 基于 FAISS、Annoy、HNSW 等向量搜索库构建,核心是…...

如何快速实现三菱FX3U程序的无线下载?
1.系统概述 三菱PLC FX3u可以使用专用下载线通过计算机串口下载程序,同样也可以使用自制下载线缆,连接无线模块 DTD435M进行远程无线下载程序,计算机端采用RS232或者RS485 将计算机端与无线模块连接,PLC端同样使用RS232转RS485将…...

Flink源码之RPC
Flink是一个典型的Master/Slave分布式实时处理系统,分布式系统组件之间必然涉及通信,也即RPC,以下图展示Flink组件之间的关系: RPCGateWay 一般RPC框架可根据用户业务类生成客户端和服务器端通信底层代码,此时只需定…...

【LeetCode 75】第二十四题(2390)从字符串中移除星号
目录 题目: 示例: 分析: 代码运行结果: 题目: 示例: 分析: 题目给我们一个字符串,然后字符串中包含星号*,要求每个星号消除一个从星号左边起最近的一个字符…...

通向架构师的道路之weblogic的集群与配置
一、Weblogic的集群 还记得我们在第五天教程中讲到的关于Tomcat的集群吗? 两个tomcat做node即tomcat1, tomcat2,使用Apache HttpServer做请求派发。 现在看看WebLogic的集群吧,其实也差不多。 区别在于: Tomcat的集群的实现为两个物理上…...

SpringBoot 项目创建与运行
一、Spring Boot 1、什么是Spring Boot?为什么要学 Spring Boot Spring 的诞生是为了简化 Java 程序的开发的,而 Spring Boot 的诞生是为了简化 Spring 程序开发的。 Spring Boot 翻译一下就是 Spring 脚手架 盖房子的这个架子就是脚手架,…...

JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...

C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
PostgreSQL——环境搭建
一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在࿰…...