现代C++中的从头开始深度学习:【5/8】卷积
一、说明
现在,让我们通过使用 2D 卷积实现实际编码深度学习模型来开始我们的道路。让我们开始吧。
二、关于本系列
我们将学习如何仅使用普通和现代C++对必须知道的深度学习算法进行编码,例如卷积、反向传播、激活函数、优化器、深度神经网络等。

查看其他故事:
0 — 现代C++深度学习编程基础
2 — 使用 Lambda 的成本函数
3 — 实现梯度下降
4 — 激活函数
...更多内容即将推出。
三、卷 积
卷积是信号处理领域的老朋友。最初,它的定义如下:
在机器学习术语中:
- 我(...通常称为输入
- K(...作为内核,以及
- F(...)作为给定 K 的 I(x) 的特征映射。
考虑一个多维离散域,我们可以将积分转换为以下求和:
最后,对于2D数字图像,我们可以将其重写为:
理解卷积的一种更简单的方法是下图:

我们可以很容易地看到内核在输入矩阵上滑动,生成另一个矩阵作为输出。这是卷积的简单情况,称为有效卷积。在这种情况下,矩阵的维度由下式给出:Output
dim(Output) = (m-k+1, n-k+1)
这里:
m
分别是输入矩阵中的行数和列数,以及n
k
是平方核的大小。
现在,让我们对第一个 2D 卷积进行编码。
四、使用循环对 2D 卷积进行编码
实现卷积的最直观方法是使用循环:
auto Convolution2D = [](const Matrix &input, const Matrix &kernel)
{const int kernel_rows = kernel.rows();const int kernel_cols = kernel.cols();const int rows = (input.rows() - kernel_rows) + 1;const int cols = (input.cols() - kernel_cols) + 1;Matrix result = Matrix::Zero(rows, cols);for (int i = 0; i < rows; ++i) {for (int j = 0; j < cols; ++j) {double sum = input.block(i, j, kernel_rows, kernel_cols).cwiseProduct(kernel).sum();result(i, j) = sum;}}return result;
};
这里没有秘密。我们将内核滑过列和行,为每个步骤应用内积。现在,我们可以像以下那样简单地使用它:
#include <iostream>
#include <Eigen/Core>using Matrix = Eigen::MatrixXd;auto Convolution2D = ...;int main(int, char **)
{Matrix kernel(3, 3);kernel << -1, 0, 1,-1, 0, 1,-1, 0, 1;std::cout << "Kernel:\n" << kernel << "\n\n";Matrix input(6, 6);input << 3, 1, 0, 2, 5, 6,4, 2, 1, 1, 4, 7,5, 4, 0, 0, 1, 2,1, 2, 2, 1, 3, 4,6, 3, 1, 0, 5, 2,3, 1, 0, 1, 3, 3;std::cout << "Input:\n" << input << "\n\n";auto output = Convolution2D(input, kernel);std::cout << "Convolution:\n" << output << "\n";return 0;
}
这是我们第一次实现卷积 2D,设计为易于理解。有一段时间,我们不关心性能或输入验证。让我们继续前进以获得更多见解。
在接下来的故事中,我们将学习如何使用快速傅立叶变换和托普利兹矩阵来实现卷积。
五、填充
在前面的示例中,我们注意到输出矩阵始终小于输入矩阵。有时,这种减少是好的,有时是坏的。我们可以通过在输入矩阵周围添加填充来避免这种减少:
填充为 1 的输入图像
卷积中填充的结果如下所示:
填充卷积 — 作者图片
实现填充卷积的一种简单(和蛮力)方法如下:
auto Convolution2D = [](const Matrix &input, const Matrix &kernel, int padding)
{int kernel_rows = kernel.rows();int kernel_cols = kernel.cols();int rows = input.rows() - kernel_rows + 2*padding + 1;int cols = input.cols() - kernel_cols + 2*padding + 1;Matrix padded = Matrix::Zero(input.rows() + 2*padding, input.cols() + 2*padding);padded.block(padding, padding, input.rows(), input.cols()) = input;Matrix result = Matrix::Zero(rows, cols);for(int i = 0; i < rows; ++i) {for(int j = 0; j < cols; ++j) {double sum = padded.block(i, j, kernel_rows, kernel_cols).cwiseProduct(kernel).sum();result(i, j) = sum;}}return result;
};
此代码很简单,但在内存使用方面非常昂贵。请注意,我们正在制作输入矩阵的完整副本以创建填充版本:
Matrix padded = Matrix::Zero(input.rows() + 2*padding, input.cols() + 2*padding);
padded.block(padding, padding, input.rows(), input.cols()) = input;
更好的解决方案可以使用指针来控制切片和内核边界:
auto Convolution2D_v2 = [](const Matrix &input, const Matrix &kernel, int padding)
{const int input_rows = input.rows();const int input_cols = input.cols();const int kernel_rows = kernel.rows();const int kernel_cols = kernel.cols();if (input_rows < kernel_rows) throw std::invalid_argument("The input has less rows than the kernel");if (input_cols < kernel_cols) throw std::invalid_argument("The input has less columns than the kernel");const int rows = input_rows - kernel_rows + 2*padding + 1;const int cols = input_cols - kernel_cols + 2*padding + 1;Matrix result = Matrix::Zero(rows, cols);auto fit_dims = [&padding](int pos, int k, int length) {int input = pos - padding;int kernel = 0;int size = k;if (input < 0) {kernel = -input;size += input;input = 0;}if (input + size > length) {size = length - input;}return std::make_tuple(input, kernel, size);};for(int i = 0; i < rows; ++i) {const auto [input_i, kernel_i, size_i] = fit_dims(i, kernel_rows, input_rows);for(int j = 0; size_i > 0 && j < cols; ++j) {const auto [input_j, kernel_j, size_j] = fit_dims(j, kernel_cols, input_cols);if (size_j > 0) {auto input_tile = input.block(input_i, input_j, size_i, size_j);auto input_kernel = kernel.block(kernel_i, kernel_j, size_i, size_j);result(i, j) = input_tile.cwiseProduct(input_kernel).sum();}}}return result;
};
这个新代码要好得多,因为这里我们没有分配一个临时内存来保存填充的输入。但是,它仍然可以改进。调用和内存成本也很高。input.block(…)
kernel.block(…)
调用的一种解决方案是使用 CwiseNullaryOp 替换它们。
block(…)
我们可以通过以下方式运行填充卷积:
#include <iostream>#include <Eigen/Core>
using Matrix = Eigen::MatrixXd;
auto Convolution2D = ...; // or Convolution2D_v2int main(int, char **)
{Matrix kernel(3, 3);kernel << -1, 0, 1,-1, 0, 1,-1, 0, 1;std::cout << "Kernel:\n" << kernel << "\n\n";Matrix input(6, 6);input << 3, 1, 0, 2, 5, 6,4, 2, 1, 1, 4, 7,5, 4, 0, 0, 1, 2,1, 2, 2, 1, 3, 4,6, 3, 1, 0, 5, 2,3, 1, 0, 1, 3, 3;std::cout << "Input:\n" << input << "\n\n";const int padding = 1;auto output = Convolution2D(input, kernel, padding);std::cout << "Convolution:\n" << output << "\n";return 0;
}
请注意,现在,输入和输出矩阵具有相同的维度。因此,它被称为填充。默认填充模式,即无填充,通常称为填充。我们的代码允许 ,或任何非负填充。same
valid
same
valid
六、内核
在深度学习模型中,核通常是奇次矩阵,如、等。有些内核非常有名,比如 Sobel 的过滤器:3x3
5x5
11x11

更容易看到每个 Sobel 滤镜对图像的影响:

使用 Sobel 过滤器的代码在这里。
Gy 突出显示水平边缘,Gx 突出显示垂直边缘。因此,Sobel 内核 Gx 和 Gy 通常被称为“边缘检测器”。
边缘是图像的原始特征,例如纹理、亮度、颜色等。现代计算机视觉的关键点是使用算法直接从数据中自动查找内核,例如Sobel过滤器。或者,使用更好的术语,通过迭代训练过程拟合内核。
事实证明,训练过程教会计算机程序实现如何执行复杂的任务,例如识别和检测物体、理解自然语言等......内核的训练将在下一个故事中介绍。
七、结论和下一步
在这个故事中,我们编写了第一个2D卷积,并使用Sobel滤波器作为将此卷积应用于图像的说明性案例。卷积在深度学习中起着核心作用。它们被大量用于当今每个现实世界的机器学习模型中。我们将重新审视卷积,以学习如何改进我们的实现,并涵盖一些功能,如步幅。
在下一个故事中,我们将讨论机器学习中最核心的问题:成本函数。
引用
用于深度学习的卷积算法指南
深度学习之书,古德费罗
神经网络和深度学习:教科书,Aggarwal
计算机视觉:算法和应用,Szeliski。
信号和系统,罗伯茨
相关文章:

现代C++中的从头开始深度学习:【5/8】卷积
一、说明 在上一个故事中,我们介绍了机器学习的一些最相关的编码方面,例如 functional 规划、矢量化和线性代数规划。 现在,让我们通过使用 2D 卷积实现实际编码深度学习模型来开始我们的道路。让我们开始吧。 二、关于本系列 我们将学习如何…...

以太网帧格式与吞吐量计算
以太网帧结构 帧大小的定义 以太网单个最大帧 6(目的MAC地址) 6(源MAC地址) 2(帧类型) 1500{IP数据包[IP头(20)DATA(1480)]} 4(CRC校验ÿ…...
vue中install方法
1:语法 vue提供install可供我们开发新的插件及全局注册组件等 install方法第一个参数是vue的构造器,第二个参数是可选的选项对象 export default {install(Vue,option){组件指令混入挂载vue原型} }2:注册组件 一:注册单个组件 1…...

Flutter:文件读取—— video_player、chewie、image_picker、file_picker
前言 简单学习一下几个比较好用的文件读取库 video_player 简介 用于视频播放 官方文档 https://pub-web.flutter-io.cn/packages/video_player 安装 flutter pub add video_player加载网络视频 class _MyHomePageState extends State<MyHomePage> {// 控制器late…...
vim的使用
vim文本编辑器 vim介绍命令模式光标移动选中内容复制内容粘贴内容删除撤销/恢复字符转换 编辑模式末行模式保存/退出查找行号显示文件切换 扩展 vim介绍 vim是Linux自带的文本编辑器,具有命令模式、编辑模式、末行模式三种模式。 模式间的切换: 命令模…...

马氏杆法检查斜视
使用 检查水平向斜视时,使用水平向马氏杆检查;重直向斜视时,使用重直问马氏杆;检查旋转斜视时,使用双马氏杆. 检查水平向斜视 双眼屈光不正全矫 双眼同时打开,右眼前加水平向马氏杆,左眼前不加 双眼同时观察点光源&…...

Mac电脑怎么使用“磁盘工具”修复磁盘
我们可以使用“磁盘工具”的“急救”功能来查找和修复磁盘错误。 “磁盘工具”可以查找和修复与 Mac 磁盘的格式及目录结构有关的错误。使用 Mac 时,错误可能会导致意外行为,而重大错误甚至可能会导致 Mac 彻底无法启动。 继续之前,请确保您…...

c++画出分割图像,水平线和垂直线
1、pca 找到图像某个区域的垂直线,并画出来 // 1、 斑块的框 血管二值化图,pca 找到垂直血管壁的直线, 还是根据斑块找主轴方向吧// Step 1: 提取斑块左右范围内的血管像素点坐标,std::vector<cv::Point> points;for (int y 0; y <…...
Python 程序设计入门(015)—— enumerate() 函数的用法
Python 程序设计入门(015)—— enumerate() 函数的用法 目录 Python 程序设计入门(015)—— enumerate() 函数的用法一、enumerate() 函数的语法二、为可迭代对象创建索引三、将字符串、列表等转换为字典1、将字符串转换为字典2、…...
__dict__属性
__dict__ 是 Python 中的一个特殊属性,通常存在于大多数 Python 对象中,用于存储该对象的可变属性。 以下是关于 __dict__ 的一些关键点和详细信息: 存储属性:对于大多数自定义的 Python 对象,__dict__ 属性包含了这个…...

k8s之Pod控制器
目录 一、Pod控制器及其功用二、pod控制器的多种类型2.1 pod容器中的有状态和无状态的区别 三、Deployment 控制器四、SatefulSet 控制器4.1 StatefulSet由以下几个部分组成4.2 为什么要有headless?4.3 为什么要有volumeClaimTemplate?4.4 滚动更新4.5 扩…...
逆元(求乘法逆元的几种方法)
目录 逆元 加法逆元 乘法逆元 如何求 快速幂 扩展欧几里得 O(n)求1到n的乘法逆元 逆元 数学中,逆元素(英语:Inverse element)推广了加法中的加法逆元和乘法中的倒数。直观地说,它是一个可以取消另一给定元素运…...
没点本事,还真做不好数字化转型
数字化转型逐渐成为企业业务增长的利器 然而,在此过程中 企业最应该注重哪些? 效率?质量? 但还有一个至关重要的点不容忽视 那就是安全 有一家硬核企业通过技术与狠活 硬生生提升了应用安全性 保障了产业与数字化的安全融合…...

windows 10 远程桌面配置
1. 修改远程桌面端口(3389) 打开注册表(winr), 输入regedit 找到配置项【计算机\HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Terminal Server\Wds\rdpwd\Tds\tcp】 , 可以通过搜索“Wds”快速定位。 修改端口配…...
OpenStreetMap 上基于A*搜索算法的C ++路线规划项目
引言 在现代的地理信息系统(GIS)中,路线规划是一个重要的组成部分。它涉及到从一个地点到另一个地点的最优路径的确定。在这篇文章中,我们将探讨如何在OpenStreetMap数据上实现一个基于A*搜索算法的C路线规划项目。 OpenStreetM…...

java实现随机生成验证码
import java.util.concurrent.ThreadLocalRandom;/* 生成验证码的工具 可动态配置验证码长度*/ public class CodeUtils {public static void main(String[] args) {//随机生成5个长度为4的验证码for (int i 0; i < 5; i) {System.out.println(CodeUtils.getCode(4));}for …...
Positive证书是什么?
Positive SSL是全球著名CA Sectigo的子品牌, 也是目前全球签发量最高的商业SSL证书。价格低,安全性高,在个人网站和中小型企业网站中拥有极高的占有率。 Positive SSL证书包括DV SSL, EV SSL,也是唯一支持IP地址加密的…...

vulnhub靶场-y0usef笔记
vulnhub靶场-y0usef笔记 信息收集 首先fscan找到目标机器ip http://192.168.167.70/ nmap扫描端口 Host is up (0.00029s latency). Not shown: 998 closed tcp ports (reset) PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.13 (Ub…...
华为智选首款纯电轿跑“LUXEED”能大卖吗?
监制 | 何玺 排版 | 叶媛 华为智选纯电轿跑来袭! 8月7日,华为常务董事余承东在社交媒体上发文,宣布华为智选即将推出首款“突破想象”的纯电轿跑车。 01 华为智选首款纯电轿跑来袭 余承东的发文引起了极大关注,在各大媒体的报…...
ArcGIS API for JavaScript 3.44 地图Demo示例合集
ArcGIS API for JavaScript 3.44 demo合集 (一)创建地图(二)基准图库(三)编辑书签(四)主页按钮(五)LayerList小部件(六)测量小工具&am…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...

家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...

计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

springboot 日志类切面,接口成功记录日志,失败不记录
springboot 日志类切面,接口成功记录日志,失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...