当前位置: 首页 > news >正文

逆元(求乘法逆元的几种方法)

目录

逆元

加法逆元

乘法逆元

如何求

快速幂

扩展欧几里得

O(n)求1到n的乘法逆元

逆元

数学中,逆元素(英语:Inverse element)推广了加法中的加法逆元和乘法中的倒数。直观地说,它是一个可以取消另一给定元素运算的元素。

加法逆元

对于一个任意数n,存在加法逆元(英语:Additive Inverse,又称相反数),其与nn的和为零(加法单位元)。n的加法逆元表示为-n。

乘法逆元

数学上,一个数xx的倒数(reciprocal),或称乘法逆元(multiplicative inverse),是指一个与x相乘的积为1的数。显然在实数范围内x的乘法逆元是1/x​。

信息学中常用的乘法逆元是模逆元。
一整数a对同余n之模逆元是指满足以下公式的整数b
a b ≡ 1 (mod n).
整数a对模数n之模逆元存在的充分必要条件是a和n互素,若此模逆元存在,在模数n 下的除法可以用和对应模逆元的乘法来达成,此概念和实数除法的概念相同。

如何求

快速幂

对于质数pp,考虑费马小定理a^(p−1) mod p = 1,可以得到ii的逆元是pow(i, p - 2, p)

对于合数pp,考虑欧拉定理a^(φ(p) ) mod p = 1,可以得到ii的逆元是pow(i, phi(p) - 1, p)
但是因为对于一般的数字计算φ(p)复杂度较高,并不使用这个方法。

扩展欧几里得

因为快速幂非常好写,一般只有在模非质数,或者是卡常数的情况下使用这个算法。
解出ax+py=1的一组解(x,y),x就是a关于模n的其中一个模逆元。
需要注意求解出的xx可能是负数。

O(n)求1到n的乘法逆元

inv[1] = 1;
for (int i = 2; i <= n; i++) {inv[i] = (long long)inv[p % i] * (p - p / i) % p;
}

这个方法可以用于组合数的预处理。

这个方法还可以改写为递归版,以替代质数情况下用快速幂求逆元。

int inv(int x) {if (x == 1) {return 1;} else {return (long long)inv(p % i) * (p - p / i) % p;}
}

另一个常用与组合数预处理的做法是:
先预处理出1到n的阶乘,然后计算n阶乘的逆元,然后倒序推出n到1阶乘的逆元。

fac[0] = 1;
for (int i = 1; i <= n; i++) {fac[i] = (long long)fac[i - 1] * i % p;
}
invfac[n] = pow(fac[n], p - 2, p);
for (int i = n - 1; i >= 0; i--) {invfac[i] = (long long)invfac[i + 1] * (i + 1) % p;
}

相关文章:

逆元(求乘法逆元的几种方法)

目录 逆元 加法逆元 乘法逆元 如何求 快速幂 扩展欧几里得 O(n)求1到n的乘法逆元 逆元 数学中&#xff0c;逆元素&#xff08;英语&#xff1a;Inverse element&#xff09;推广了加法中的加法逆元和乘法中的倒数。直观地说&#xff0c;它是一个可以取消另一给定元素运…...

没点本事,还真做不好数字化转型

数字化转型逐渐成为企业业务增长的利器 然而&#xff0c;在此过程中 企业最应该注重哪些&#xff1f; 效率&#xff1f;质量&#xff1f; 但还有一个至关重要的点不容忽视 那就是安全 有一家硬核企业通过技术与狠活 硬生生提升了应用安全性 保障了产业与数字化的安全融合…...

windows 10 远程桌面配置

1. 修改远程桌面端口&#xff08;3389&#xff09; 打开注册表&#xff08;winr&#xff09;, 输入regedit 找到配置项【计算机\HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Terminal Server\Wds\rdpwd\Tds\tcp】 &#xff0c; 可以通过搜索“Wds”快速定位。 修改端口配…...

OpenStreetMap 上基于A*搜索算法的C ++路线规划项目

引言 在现代的地理信息系统&#xff08;GIS&#xff09;中&#xff0c;路线规划是一个重要的组成部分。它涉及到从一个地点到另一个地点的最优路径的确定。在这篇文章中&#xff0c;我们将探讨如何在OpenStreetMap数据上实现一个基于A*搜索算法的C路线规划项目。 OpenStreetM…...

java实现随机生成验证码

import java.util.concurrent.ThreadLocalRandom;/* 生成验证码的工具 可动态配置验证码长度*/ public class CodeUtils {public static void main(String[] args) {//随机生成5个长度为4的验证码for (int i 0; i < 5; i) {System.out.println(CodeUtils.getCode(4));}for …...

Positive证书是什么?

Positive SSL是全球著名CA Sectigo的子品牌&#xff0c; 也是目前全球签发量最高的商业SSL证书。价格低&#xff0c;安全性高&#xff0c;在个人网站和中小型企业网站中拥有极高的占有率。 Positive SSL证书包括DV SSL&#xff0c; EV SSL&#xff0c;也是唯一支持IP地址加密的…...

vulnhub靶场-y0usef笔记

vulnhub靶场-y0usef笔记 信息收集 首先fscan找到目标机器ip http://192.168.167.70/ nmap扫描端口 Host is up (0.00029s latency). Not shown: 998 closed tcp ports (reset) PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.13 (Ub…...

华为智选首款纯电轿跑“LUXEED”能大卖吗?

监制 | 何玺 排版 | 叶媛 华为智选纯电轿跑来袭&#xff01; 8月7日&#xff0c;华为常务董事余承东在社交媒体上发文&#xff0c;宣布华为智选即将推出首款“突破想象”的纯电轿跑车。 01 华为智选首款纯电轿跑来袭 余承东的发文引起了极大关注&#xff0c;在各大媒体的报…...

ArcGIS API for JavaScript 3.44 地图Demo示例合集

ArcGIS API for JavaScript 3.44 demo合集 &#xff08;一&#xff09;创建地图&#xff08;二&#xff09;基准图库&#xff08;三&#xff09;编辑书签&#xff08;四&#xff09;主页按钮&#xff08;五&#xff09;LayerList小部件&#xff08;六&#xff09;测量小工具&am…...

RFID工业识别技术:供应链智能化的科技颠覆

RFID工业识别技术&#xff0c;作为物联网的先锋&#xff0c;正在供应链管理领域展现着前所未有的科技颠覆。从物料追踪到库存管理&#xff0c;再到物流配送&#xff0c;RFID技术以其高效的数据采集和智能的自动化处理&#xff0c;彻底改变着传统供应链的运营方式。 RFID在物料追…...

行列转换两例的思考

1、多行转成一列 (1)、建测试表及插入测试数据 create table t(i int,a varchar2(1)); insert into t(i,a) select 1,a from dual union all select 1,b from dual union all select 1,d from dual union all select 1,e from dual union all select 2,z from dual union all…...

高德地图 SDK 接口测试接入(AndroidTest 上手)

学习资料 官方文档 在 Android 平台上测试应用 | Android 开发者 | Android Developers 测试了解 【玩转Test】开篇-Android test 介绍 Android单元测试全解_android 单元测试_一代小强的博客-CSDN博客 Android单元测试-对Activity的测试_activitytestrule_许佳佳233的博客…...

省电模式稳定电压显示IC32×4 LCD显示驱动芯片

简述 VK1C21A是一个点阵式存储映射的LCD驱动器&#xff0c;可支持最大128点&#xff08;32SEGx4COM&#xff09; 的LCD屏&#xff0c;也支持2COM和3COM的LCD屏。单片机可通过3/4个通信脚配置显示参数和发 送显示数据&#xff0c;也可通过指令进入省电模式。具备高抗干扰&a…...

分布式架构的观测

分布式架构的观测 日志日志的输出收集与缓冲加工与聚合存储与查询 追踪数据收集 度量 在一个分布式应用中&#xff0c;如果出现了某个异常&#xff0c;那我们必然不可能只依靠 awk、grep 等命令来查看日志分析问题&#xff0c;往往分布式架构的一个异常都贯通多个节点&#xff…...

交替方向乘子

目录 一&#xff0c;交替方向乘子ADMM 1&#xff0c;带线性约束的分离优化模型 2&#xff0c;常见优化模型转带线性约束的分离优化模型 3&#xff0c;带线性约束的分离优化模型求解 4&#xff0c;交替方向乘子ADMM 本文部分内容来自教材 一&#xff0c;交替方向乘子ADMM …...

9-数据结构-栈(C语言版)

数据结构-栈&#xff08;C语言版&#xff09; 目录 数据结构-栈&#xff08;C语言版&#xff09; 1.栈的基础知识 1.入栈&#xff0c;出栈的排列组合 情景二&#xff1a;Catalan函数&#xff08;计算不同出栈的总数&#xff09; 2.栈的基本操作 1.顺序存储 (1)顺序栈-定义…...

C#,数值计算——用于从连续的数据值流估计任意分位数的计算方法与源程序

1 分位数Quantile 分位数&#xff08;Quantile&#xff09;&#xff0c;亦称分位点&#xff0c;是指将一个随机变量的概率分布范围分为几个等份的数值点&#xff0c;常用的有中位数&#xff08;即二分位数&#xff09;、四分位数、百分位数等。 2 常见各类分位数 2.1 二分位…...

实践分享:小程序事件系统设计

微信小程序官方文档中解释说&#xff1a;事件是用于子组件向父组件传递数据&#xff0c;可以传递任意数据。 小程序开发中的事件是指视图层到逻辑层的通讯方式&#xff0c;主要是可以将用户的行为反馈到逻辑层进行处理。事件可以绑定在组件上&#xff0c;当达到触发事件&#…...

无涯教程-Perl - bless函数

描述 此函数告诉REF引用的实体,它现在是CLASSNAME包中的对象,如果省略CLASSNAME,则为当前包中的对象。建议使用bless的两个参数形式。 语法 以下是此函数的简单语法- bless REF, CLASSNAMEbless REF返回值 该函数返回对祝福到CLASSNAME中的对象的引用。 例 以下是显示其…...

Java关键字:final解析

目录 一、final变量 二、final方法 三、final类 final是Java语言中的一个关键字&#xff0c;凡是被final关键字修饰过的内容都是不可改变的。 一、final变量 final关键字可用于变量声明&#xff0c;一旦该变量被设定&#xff0c;就不可以再改变该变量的值。通常&#xff0…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

ios苹果系统,js 滑动屏幕、锚定无效

现象&#xff1a;window.addEventListener监听touch无效&#xff0c;划不动屏幕&#xff0c;但是代码逻辑都有执行到。 scrollIntoView也无效。 原因&#xff1a;这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作&#xff0c;从而会影响…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

android RelativeLayout布局

<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋

随着工业以太网的发展&#xff0c;其高效、便捷、协议开放、易于冗余等诸多优点&#xff0c;被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口&#xff0c;具有实时性、开放性&#xff0c;使用TCP/IP和IT标准&#xff0c;符合基于工业以太网的…...

SQL Server 触发器调用存储过程实现发送 HTTP 请求

文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...