Transformer 立体视觉 Depth Estimation
1. Intro
立体深度估计具有重要的意义,因为它能够重建三维信息。为此,在左右相机图像之间匹配相应的像素;对应像素位置的差异,即视差,可以用来推断深度并重建3D场景。最近基于深度学习的立体深度估计方法已经显示出有希望的结果,但仍然存在一些挑战。
其中一个挑战涉及使用有限的视差范围。理论上,视差值的范围可以从0到图像宽度,这取决于相机的分辨率/基线以及它们与物理对象的接近程度。然而,许多性能最好的方法都被限制在手动预先指定的视差范围内(通常最大值为192像素)[21]。这些方法依赖于“成本量”,其中计算多个候选匹配的匹配成本,并计算最终预测的差异值作为总和。这种自我施加的视差范围是必要的,以使这些方法的内存可行的实现,但不是灵活的物理场景和/或相机设置的属性。在自动驾驶和内窥镜干预等应用中,无论相机设置如何(视差值可能大于192),识别近距离物体以避免碰撞是很重要的,这表明需要放宽固定视差范围假设。
几何属性和约束,如遮挡和匹配唯一性,导致了非学习方法的成功,如[18],也经常在基于学习的方法中缺失。对于立体深度估计,遮挡区域没有有效的视差。先前的算法通常通过分段平滑假设来推断被遮挡区域的差异,这可能并不总是有效的。提供置信度估计和视差值将有利于下游分析,例如配准或场景理解算法,以便对遮挡和低置信度估计进行加权或拒绝。然而,大多数先前的方法不提供这样的信息。此外,一幅图像中的像素不应该与另一幅图像中的多个像素匹配(直到图像分辨率),因为它们对应于物理场景中的相同位置[28]。虽然这个约束对于解决歧义非常有用,但是大多数现有的基于学习的方法并没有强加它。
上述问题在很大程度上源于当代立体匹配观的缺陷,即试图构建一个成本体。从沿极线序列对序列匹配的角度考虑视差估计的方法可以避免这些挑战。这些方法并不新鲜
相关文章:
Transformer 立体视觉 Depth Estimation
1. Intro 立体深度估计具有重要的意义,因为它能够重建三维信息。为此,在左右相机图像之间匹配相应的像素;对应像素位置的差异,即视差,可以用来推断深度并重建3D场景。最近基于深度学习的立体深度估计方法已经显示出有希望的结果,但仍然存在一些挑战。 其中一个挑战涉及使…...
vue去掉所有输入框两边空格,封装指令去空格,支持Vue2和Vue3,ElementUI Input去空格
需求背景 就是页面很多表单输入框,期望在提交的时候,都要把用户两边的空格去掉 ❌使用 vue 的指令 .trim 去掉空格 中间会输入不了空格, 比如我想输入 你好啊 中国, 这中间的空格输入不了,只能变成 你好啊中国 ❌在提交的时候使用…...
认识FFMPEG框架
FFMPEG全称: Fast Forward Moving Picture Experts Group (MPEG:动态图像专家组) ffmpeg相关网站: git://source.ffmpeg.org/ffmpeg.git http://git.videolan.org/?pffmpeg.git https://github.com/FFmpeg/FFmpeg FFMPEG框架基本组件: AVFormat , AVCodec, AVDevice, AVFil…...
Vue3 大屏数字滚动效果
父组件: <template> <div class"homePage"> <NumRoll v-for"(v, i) in numberList" :key"i" :number"v"></NumRoll> </div> </template> <script setup> import { onMounted, r…...
【深度学习注意力机制系列】—— SENet注意力机制(附pytorch实现)
深度学习中的注意力机制(Attention Mechanism)是一种模仿人类视觉和认知系统的方法,它允许神经网络在处理输入数据时集中注意力于相关的部分。通过引入注意力机制,神经网络能够自动地学习并选择性地关注输入中的重要信息ÿ…...
go 函数
go 语言函数 go 函数函数定义Go函数的特点如下函数作为参数可变参数相同类型可变参数不同类型可变参数 return语句作用概述空的return语句空白标识符多个返回值命名返回值 defer 语句作用引申出来的面试题for defer下面是一个使用defer的示例代码输出结果 匿名函数定义匿名函数…...
python之正则表达式
目录 正则表达式 python正则表达式方法 match search findall finditer compile 元字符匹配 元字符 量词 贪婪匹配和惰性匹配 正则表达式的group 语法 案例 正则表达式 正则表达式又称规则表达式,是使用单个字符串来描述、匹配某个句法规则的字符串…...
【LeetCode每日一题】——219.存在重复元素II
文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【解题思路】八【时间频度】九【代码实现】十【提交结果】 一【题目类别】 哈希表 二【题目难度】 简单 三【题目编号】 219.存在重复元素II 四【题目描述】 给你一个…...
篇六:适配器模式:让不兼容变兼容
篇六:“适配器模式:让不兼容变兼容” 开始本篇文章之前先推荐一个好用的学习工具,AIRIght,借助于AI助手工具,学习事半功倍。欢迎访问:http://airight.fun/ 另外有2本不错的关于设计模式的资料,…...
【云原生】Docker-compose中所有模块学习
compose模块 模板文件是使用 Compose 的核心,涉及到的指令关键字也比较多。但大家不用担心,这里面大部分指令跟 docker run 相关参数的含义都是类似的。 默认的模板文件名称为 docker-compose.yml,格式为 YAML 格式。 version: "3&quo…...
广义积分练习
前置知识 无穷限积分瑕积分 练习 计算 ∫ 0 ∞ 1 x ( 1 x ) d x \int_0^{\infty}\dfrac{1}{\sqrt x(1x)}dx ∫0∞x (1x)1dx 解: x 0 \qquad x0 x0为瑕点 \qquad 原式 lim a → 0 lim b → ∞ ∫ a b 1 x ( 1 x ) d x lim a → 0 lim …...
element-ui树形表格,左边勾选,右边显示选中的数据-功能(如动图)
功能如图 功能需求 表格树形表格勾选数据,右边显示对应勾选的数据内容,选中客户,自动勾选所有的店铺(子级),选中其中一个店铺,自动勾选上客户(父级),同时会存在只有客户(下面没有子级的情况&am…...
Android数字价格变化的动画效果的简单实现
原理:使用ValueAnimator属性动画类实现,它通过值的改变手动设置对象的属性值来实现动画效果。直接贴代码: public static void doNumberAnim(TextView tvPrice, float startNumber, float endNumber) {ValueAnimator animator ValueAnimato…...
Win10无法投影关闭3D模式
Win10不小心开启了3D模式,插上投影仪就一闪一闪的,无法正投影 解决办法: 1. 打开注册表工具regedit,删除以下注册表,重启电脑 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\GraphicsDrivers\Configurat…...
FFmpeg 编码详细流程
介绍 FFmpeg的 libavcodec 模块完成音视频多媒体的编解码模块。FFmpeg 本身不具有音视频编码的功能和底层能力,只是对各类第三方的编码器API 进行封装调用。老版本的 FFmpeg 将avcodec_encode_video2()作为视频的解码函数 API,将avcodec_encode_audio2(…...
05如何做微服务架构设计
一句话导读 微服务架构设计方法有:领域驱动设计DDD(Domain-Driven-Design)、12因素应用(12-Factor App)、事件驱动架构EDA(Event-Driven Architecture)等等,但是他们都必须遵守微服务…...
安卓开发问题记录:需要常量表达式
问题原因 写代码过程中爆出这个错误:需要常量表达式,定位到switch。 解决方法:把switch case,改成if else 错误源代码: public void onClick(View view) {switch (view.getId()) {case R.id.iv_code:RxCaptcha.build(…...
回归预测 | MATLAB实现基于SVM-RFE-BP支持向量机递归特征消除特征选择算法结合BP神经网络的多输入单输出回归预测
回归预测 | MATLAB实现基于SVM-RFE-BP支持向量机递归特征消除特征选择算法结合BP神经网络的多输入单输出回归预测 目录 回归预测 | MATLAB实现基于SVM-RFE-BP支持向量机递归特征消除特征选择算法结合BP神经网络的多输入单输出回归预测预测效果基本介绍研究内容程序设计参考资料…...
配置root账户ssh免密登录并使用docker-machine构建docker服务
简介 Docker Machine是一种可以在多种平台上快速安装和维护docker运行环境,并支持多种平台,让用户可以在很短时间内在本地或云环境中搭建一套docker主机集群的工具。 使用docker-machine命令,可以启动、审查、停止、重启托管的docker 也可以…...
【力扣周赛】第357场周赛
【力扣周赛】第357场周赛 2810. 故障键盘题目描述解题思路 2811. 判断是否能拆分数组题目描述解题思路 2810. 故障键盘 题目描述 描述:你的笔记本键盘存在故障,每当你在上面输入字符 ‘i’ 时,它会反转你所写的字符串。而输入其他字符则可以…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist
现象: android studio报错: [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决: 不要动CMakeLists.…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...
MySQL 主从同步异常处理
阅读原文:https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主,遇到的这个错误: Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一,通常表示ÿ…...
上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式
简介 在我的 QT/C 开发工作中,合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式:工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...
小智AI+MCP
什么是小智AI和MCP 如果还不清楚的先看往期文章 手搓小智AI聊天机器人 MCP 深度解析:AI 的USB接口 如何使用小智MCP 1.刷支持mcp的小智固件 2.下载官方MCP的示例代码 Github:https://github.com/78/mcp-calculator 安这个步骤执行 其中MCP_ENDPOI…...
React父子组件通信:Props怎么用?如何从父组件向子组件传递数据?
系列回顾: 在上一篇《React核心概念:State是什么?》中,我们学习了如何使用useState让一个组件拥有自己的内部数据(State),并通过一个计数器案例,实现了组件的自我更新。这很棒&#…...
RKNN开发环境搭建2-RKNN Model Zoo 环境搭建
目录 1.简介2.环境搭建2.1 启动 docker 环境2.2 安装依赖工具2.3 下载 RKNN Model Zoo2.4 RKNN模型转化2.5编译C++1.简介 RKNN Model Zoo基于 RKNPU SDK 工具链开发, 提供了目前主流算法的部署例程. 例程包含导出RKNN模型, 使用 Python API, CAPI 推理 RKNN 模型的流程. 本…...
