当前位置: 首页 > news >正文

clickhouse 删除操作

OLAP 数据库设计的宗旨在于分析适合一次插入多次查询的业务场景,市面上成熟的 AP 数据库在更新和删除操作上支持的均不是很好,当然 clickhouse 也不例外。但是不友好不代表不支持,本文主要介绍在 clickhouse 中如何实现数据的删除,以及最新版本中 clickhouse 所做的一些技术突破

Click_House_Delete_Statement_6fd661d851

一、mutations

刚接触 clickhouse 的小伙伴或许对 mutations 就很熟悉了,mutation 查询可以看成 alter 语句的变种。虽然 mutation 能够最终实现修改和删除的需求,但不能完全以通常意义的 delete 和 update 来理解,我们需要清醒的认识到它的不同:

  1. mutation 是一个很重的操作,适合批量数据操作
  2. 不支持事务、一旦操作立刻生效无法回滚
  3. mutation 为异步操作

1.1 实操

创建一张表用于测试 mutations 操作

create table mutations_operate
(UserId     UInt64,Score      UInt64,CreateTime DateTime
) engine = MergeTree()partition by toYYYYMMDD(CreateTime)order by UserId;

接下来分别插入两批不同分区的数据

insert into mutations_operate
select number,abs(number - 100),'2023-08-08 00:00:00'
from system.numbers
limit 1000000;insert into mutations_operate
select number,abs(number - 100),'2023-08-09 00:00:00'
from system.numbers
limit 1000000;

尝试删除 20230808 分区中 1000-10000 之间的所有数据,sql 如下

alter table mutations_operate delete where toYYYYMMDD(CreateTime) = 20230808 and UserId between 1000 and 10000;

可以统计一下该分区的数据条数来确认是否成功删除,从体验来说目前的数据规模感受不来 mutations 的“重”,感觉像是瞬间完成的。

当然我们也可以查看system.mutations表来监控 mutations 操作的进度

select table, mutation_id, `block_numbers.number` as num, is_done
from system.mutations;Query id: 0878a0f1-a5ff-474c-8f84-518ce5dc5e1d┌─table─────────────┬─mutation_id────┬─num─┬─is_done─┐
│ mutations_operate │ mutation_3.txt │ [3]1 │
└───────────────────┴────────────────┴─────┴─────────┘1 row in set. Elapsed: 0.002 sec.

mutation_id 是一个日志文件,可以在表存储目录中查看,完整记录了本次操作的语句和时间,例如

format version: 1
create time: 2023-08-09 18:54:06
commands: DELETE WHERE (toYYYYMMDD(CreateTime) = 20230808) AND ((UserId >= 1000) AND (UserId <= 10000))

而其中的 3 以及block_numbers.number是 mutation 号,每执行一条 delete 或 update 语句都会对应一个唯一的编号

id_done 表示本次 mutation 操作是否执行完成,1 表示已经完成

1.2 原理

为了探寻 mutation 操作的原理和执行流程重置一下表数据(删除重建即可),在插入两批数据后查看磁盘目录

» du -h0B	./detached
7.7M	./20230809_2_2_0
7.7M	./20230808_1_1_015M	.

可以看到两个分区目录均是 7.7M

尝试执行删除操作后,首先你会在日志中看到下面的查询信息

<Debug> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): Key condition: unknown, (column 0 in [1000, +Inf)), (column 0 in (-Inf, 10000]), and, and
<Debug> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): Key condition: unknown, (column 0 in [1000, +Inf)), (column 0 in (-Inf, 10000]), and, and
<Debug> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): MinMax index condition: (toYYYYMMDD(column 0) in [20230808, 20230808]), unknown, unknown, and, and
<Debug> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): MinMax index condition: (toYYYYMMDD(column 0) in [20230808, 20230808]), unknown, unknown, and, and
<Trace> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): Running binary search on index range for part 20230808_1_1_0 (124 marks)
<Trace> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): Found (LEFT) boundary mark: 0
<Debug> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): Selected 0/1 parts by partition key, 0 parts by primary key, 0/0 marks by primary key, 0 marks to read from 0 ranges
<Trace> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): Found (RIGHT) boundary mark: 2
<Trace> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): Found continuous range in 13 steps
<Debug> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): Selected 1/1 parts by partition key, 1 parts by primary key, 2/123 marks by primary key, 2 marks to read from 1 ranges
<Trace> delete_operate.mutations_operate (7f120927-b71e-4f85-a06c-21a94b7f89e3) (SelectExecutor): Spreading mark ranges among streams (default reading)
<Trace> MergeTreeInOrderSelectProcessor: Reading 1 ranges in order from part 20230808_1_1_0, approx. 16384 rows starting from 0
<Trace> Aggregator: Aggregation method: without_key
<Trace> AggregatingTransform: Aggregated. 0 to 1 rows (from 0.00 B) in 0.000570041 sec. (0.000 rows/sec., 0.00 B/sec.)
<Trace> Aggregator: Merging aggregated data
<Trace> MutateTask: Part 20230809_2_2_0 doesn't change up to mutation version 3

首先,clickhouse 会使用我们执行的删除语句中附带的 where 条件在每个分区中执行 count 查询,为了判断哪些分区有需要被删除的数据,从日志可以看出Reading 1 ranges in order from part 20230808_1_1_0, approx. 16384 rows starting from 0以及Part 20230809_2_2_0 doesn't change up to mutation version 3。注意日志中所说 20230808 的范围是 0~16384 并不是实际删除的范围,而是索引的范围。我们知道 mergeTree 引擎默认的跳数索引的间隔是 8192 而我们删除的数据范围是 1000-10000,显然作为一个整周期自然是 0-16384(2x8192)

当我们再次查看磁盘目录

» du -h0B	./detached
7.7M	./20230809_2_2_0
7.7M	./20230808_1_1_00B	./20230809_2_2_0_3
7.6M	./20230808_1_1_0_323M	.

总目录从 15M 变成了 12M,而两个分区也都各自生成了一个以 mutation version 为后缀的新分区

因此接下来的逻辑如下:

clickhouse 会创建一个 tmp_mut_ 为前缀、mutation version 为后缀的临时分区目录,例如这里的就是 tmp_mut_20230808_1_1_0_3

对于需要删除的分区,会在 tmp_mut 目录中生成全新的 .bin 和 .mrk 文件

对于无需删除的分区,clickhouse 会创建一个 tmp_clone_ 为前缀、mutation version 为后缀的临时分区目录并将原分区里面的数据以硬链接的方式拷贝过去,并修改目录名称为正确的格式

下面是执行的日志情况

<Debug> delete_operate.mutations_operate (4351d317-2cd6-4328-85fe-49d5beeff5c3): Clone part /opt/homebrew/var/lib/clickhouse/store/435/4351d317-2cd6-4328-85fe-49d5beeff5c3/20230809_2_2_0/ to /opt/homebrew/var/lib/clickhouse/store/435/4351d317-2cd6-4328-85fe-49d5beeff5c3/tmp_clone_20230809_2_2_0_3
<Trace> delete_operate.mutations_operate (4351d317-2cd6-4328-85fe-49d5beeff5c3): Renaming temporary part tmp_clone_20230809_2_2_0_3 to 20230809_2_2_0_3 with tid (1, 1, 00000000-0000-0000-0000-000000000000).
<Trace> MergedBlockOutputStream: filled checksums 20230808_1_1_0_3 (state Temporary)
<Trace> delete_operate.mutations_operate (4351d317-2cd6-4328-85fe-49d5beeff5c3): Renaming temporary part tmp_mut_20230808_1_1_0_3 to 20230808_1_1_0_3 with tid (1, 1, 00000000-0000-0000-0000-000000000000)

从磁盘目录也可以佐证这一点,首先上面的 20230809_2_2_0_3 占用空间为 0B,当然这是 mac 独有的现实方式,在其它 linux 系统不一定是这么显示,进入各个分区查看一下

wjun :: data/delete_operate/mutations_operate ‹stable› » ll 20230808_1_1_0_3
total 15632
-rw-r-----@ 1 wjun  admin    17863 Aug  9 19:36 CreateTime.bin
-rw-r-----@ 1 wjun  admin      369 Aug  9 19:36 CreateTime.cmrk2
-rw-r-----@ 1 wjun  admin  3968891 Aug  9 19:36 Score.bin
-rw-r-----@ 1 wjun  admin      409 Aug  9 19:36 Score.cmrk2
-rw-r-----@ 1 wjun  admin  3969011 Aug  9 19:36 UserId.bin
-rw-r-----@ 1 wjun  admin      409 Aug  9 19:36 UserId.cmrk2
-rw-r-----@ 1 wjun  admin      490 Aug  9 19:36 checksums.txt
-rw-r-----@ 1 wjun  admin       90 Aug  9 19:36 columns.txt
-rw-r-----@ 1 wjun  admin        6 Aug  9 19:36 count.txt
-rw-r-----@ 1 wjun  admin       10 Aug  9 19:36 default_compression_codec.txt
-rw-r-----@ 1 wjun  admin        1 Aug  9 19:36 metadata_version.txt
-rw-r-----@ 1 wjun  admin        8 Aug  9 19:36 minmax_CreateTime.idx
-rw-r-----@ 1 wjun  admin        4 Aug  9 19:36 partition.dat
-rw-r-----@ 1 wjun  admin      188 Aug  9 19:36 primary.cidx
wjun :: data/delete_operate/mutations_operate ‹stable› » ll 20230809_2_2_0_3
total 15768
-rw-r-----@ 2 wjun  admin    18042 Aug  9 19:35 CreateTime.bin
-rw-r-----@ 2 wjun  admin      375 Aug  9 19:35 CreateTime.cmrk2
-rw-r-----@ 2 wjun  admin  4004938 Aug  9 19:35 Score.bin
-rw-r-----@ 2 wjun  admin      415 Aug  9 19:35 Score.cmrk2
-rw-r-----@ 2 wjun  admin  4004915 Aug  9 19:35 UserId.bin
-rw-r-----@ 2 wjun  admin      415 Aug  9 19:35 UserId.cmrk2
-rw-r-----@ 2 wjun  admin      490 Aug  9 19:35 checksums.txt
-rw-r-----@ 2 wjun  admin       90 Aug  9 19:35 columns.txt
-rw-r-----@ 2 wjun  admin        7 Aug  9 19:35 count.txt
-rw-r-----@ 2 wjun  admin       10 Aug  9 19:35 default_compression_codec.txt
-rw-r-----@ 2 wjun  admin        8 Aug  9 19:35 minmax_CreateTime.idx
-rw-r-----@ 2 wjun  admin        4 Aug  9 19:35 partition.dat
-rw-r-----@ 2 wjun  admin      173 Aug  9 19:35 primary.cidx

20230809_2_2_0_3 分区 inode 被连接次数为 2 表示建立了硬链接。

因此 mutation 的删除逻辑如下:

  1. 每个分区执行附带删除操作的 where 条件的 count 查询,获取需要执行删除操作的分区
  2. 对于需要执行删除操作的分区会创建一个临时目录并生成全新(删除需要删除的行)的文件,随后 rename
  3. 对于无需执行删除操作的分区会创建一个临时目录并以硬链接的方式拷贝文件,随后 rename
  4. 原分区在system.parts中会被置为 inactive 状态
  5. 在下一次 merge 是删除原分区

而对于更新操作基本逻辑一致,需要注意的是需要执行更新操作的分区会有如下两种情况:

  1. 分区类型为 wide:只会重新生成受影响行的 bin 和 mrk 文件,不受影响的文件以硬链接的方式拷贝
  2. 分区类型为 compact:因为所有列都是一个文件,因此会重新生成 bin 和 mrk 文件

更新和删除操作流程不一致的原因是:删除影响全部列而更新只影响部分列

mergeTree 表的分区类型分为 wide 和 compact 两种受min_bytes_for_wide_partmin_rows_for_wide_part参数影响。wide 类型的分区一个列一个文件,compact 类型的分区所有列公用一个文件,当分区数据的行数和字节较小时为 compact 类型,不管是查询所有字段或某个字段相对较快;当数据量很大时就会以列式存储来追求 AP 查询性能

1.3 不足

当我们走一遍 mutation 时发现在删除任务完成后表 merge 前的这一段时间磁盘空间不减反增,这个就让用户很难接受了。因此就可能会出现因为磁盘空间不足想要删除数据,结果删除操作导致空间进一步不足的窘境。同时 mutation 会重写受影响的分区,这也是 mutation 操作重的原因所在。

二、mergeTree

对于 clickhouse 这类高性能分析型数据库而言,修改源文件是一件非常奢侈且代价昂贵的操作,相对于直接修改源文件,我们将修改和新增操作都转换为新增操作,即以增代删将是一个非常不错的选择。是不是和 Hbase 的思路十分接近。在 mergeTree 家族中有一个特殊的表引擎叫 CollapsingMergeTree,翻译过来叫折叠合并树引擎就是提供了这样的功能。它通过定义一个 sign 标记字段来记录数据行的状态。如果 sign 为 1 表示这是一行有效的数据,如果 sign 为 -1 表示这行数据被删除。当 CollapsingMergeTree 分区合并时同一分区的 +1、-1 将会被抵消,犹如一张纸折叠一般。

2.1 实操

创建 CollapsingMergeTree 表

create table collapsing_table
(Id         String,Code       Int32,CreateTime DateTime,Sign       Int8
) engine = CollapsingMergeTree(Sign)partition by toYYYYMMDD(CreateTime)order by Id;

注:和其它 mergeTree 引擎一样 CollapsingMergeTree 依然是以 order by 字段作为后续数据唯一性的依据

插入一批原始数据

insert into collapsing_table values ('A000', 100, '2023-08-09 00:00:00', 1);
insert into collapsing_table values ('A001', 100, '2023-08-09 00:00:00', 1);
insert into collapsing_table values ('A002', 100, '2023-08-09 00:00:00', 1);

修改 A000 的 Code 为 200 并删除 A002 的数据

# 修改 A000 的 Code 为 200
insert into collapsing_table values ('A000', 100, '2023-08-09 00:00:00', -1);
insert into collapsing_table values ('A000', 200, '2023-08-09 00:00:00', 1);
# 删除 A002 的数据
insert into collapsing_table values ('A002', 100, '2023-08-09 00:00:00', -1);
# 手动执行一下分区合并操作
optimize table collapsing_table final;

可以观察到数据已经被删除和修改。

CollapsingMergeTree 在分区合并折叠数据的时候,遵循下面规则

  1. 如果 sign = 1 比 sign = -1 多一行,最后保留 sign = 1 的数据
  2. 如果 sign = 1 比 sign = -1 少一行,最后保留 sign = -1 的数据
  3. 如果 sign = 1 和 sign = -1 一样多,且最后一行时 sign = 1,则保留第一行的 sign = -1 和最后一行 sign = 1
  4. 如果 sign = 1 和 sign = -1 一样多,且最后一行时 sign = -1,则什么也不保留
  5. 其余情况 clickhouse 会打印告警日志,但不会报错且查询情况不可预知

2.2 不足

当前表的数据如下

select *
from collapsing_table;Query id: 4b1da757-d02a-4b88-92e5-1fe659ca462c┌─Id───┬─Code─┬──────────CreateTime─┬─Sign─┐
│ A002 │  3002023-08-09 00:00:00-1 │
└──────┴──────┴─────────────────────┴──────┘
┌─Id───┬─Code─┬──────────CreateTime─┬─Sign─┐
│ A002 │  3002023-08-09 00:00:001 │
└──────┴──────┴─────────────────────┴──────┘
┌─Id───┬─Code─┬──────────CreateTime─┬─Sign─┐
│ A000 │  2002023-08-09 00:00:001 │
│ A001 │  1002023-08-09 00:00:001 │
└──────┴──────┴─────────────────────┴──────┘4 rows in set. Elapsed: 0.003 sec.

从操作来看 A002 是要被删除的

但是如果查询sql如下

select Id, sum(Code), count(Code), avg(Code)
from collapsing_table
group by Id;Query id: 610f6503-1344-4ba0-9564-6327277ffe95┌─Id───┬─sum(Code)─┬─count(Code)─┬─avg(Code)─┐
│ A001 │       1001100 │
│ A000 │       2001200 │
│ A002 │       6002300 │
└──────┴───────────┴─────────────┴───────────┘3 rows in set. Elapsed: 0.005 sec.

此时的结果是不对的,因此需要改写 sql

select Id, sum(Code * Sign), count(Code * Sign), avg(Code * Sign)
from collapsing_table
group by Id
having sum(Sign) > 0;Query id: a3fe84d0-33a5-4287-bd02-49ab03df1852┌─Id───┬─sum(multiply(Code, Sign))─┬─count(multiply(Code, Sign))─┬─avg(multiply(Code, Sign))─┐
│ A001 │                       1001100 │
│ A000 │                       2001200 │
└──────┴───────────────────────────┴─────────────────────────────┴───────────────────────────┘2 rows in set. Elapsed: 0.005 sec.

当然还有一种方式就是在查询数据前执行分区合并操作optimize table collapsing_table final;,但这种方式效率极低在生产中慎用

同时 CollapsingMergeTree 还存在一些问题,例如在分区合并前用户是可以看到所有数据的。当然上面所说的问题都不是最致命的,CollapsingMergeTree 最致命点在于对于 sign 的写入顺序有严格的要求,对于一个删除操作正常的顺序应该是先写入 1 再写入 -1

insert into collapsing_table values ('A002', 300, '2023-08-09 00:00:00', 1);
insert into collapsing_table values ('A002', 300, '2023-08-09 00:00:00', -1);

但如果颠倒顺序

insert into collapsing_table values ('A002', 300, '2023-08-09 00:00:00', -1);
insert into collapsing_table values ('A002', 300, '2023-08-09 00:00:00', 1);

则不会被删除。而在生产环境一旦 CollapsingMergeTree 在多线程中处理就无法保证写入顺序了。

当然幸运的是 clickhouse 也注意到 CollapsingMergeTree 的缺点并推出了新的表引擎 VersionedCollapsingMergeTree,在 CollapsingMergeTree 的基础上将按照写入顺序折叠修改为按照版本号顺序进行折叠,而版本号交由用户来管理。VersionedCollapsingMergeTree 引擎的操作就交给读者来体验,毕竟下面还有一种更贴合 TP 数据库操作的删除操作

三、lightweight

上面介绍了通过 mutation 和 mergeTree 来实现删除操作,但是 mutation 操作太重,mergeTree 则需要修改 sql 已经且删除首分区合并时机影响。从 clickhouse v22.8 开始提供了一个轻量级删除功能且语法为标准 sql 🎉🎉🎉

3.1 实操

准备表和数据

create table lightweight_operate
(UserId     UInt64,Score      UInt64,CreateTime DateTime
) engine = MergeTree()partition by toYYYYMMDD(CreateTime)order by UserId;insert into lightweight_operate
select number,abs(number - 100),'2023-08-08 00:00:00'
from system.numbers
limit 1000000;insert into lightweight_operate
select number,abs(number - 100),'2023-08-09 00:00:00'
from system.numbers
limit 1000000;

同样删除 20230808 分区中 1000-10000 之间的所有数据,sql 如下

delete from lightweight_operate where toYYYYMMDD(CreateTime) = 20230808 and UserId between 1000 and 10000;

验证一下

select count() from lightweight_operate where toYYYYMMDD(CreateTime) = 20230808;Query id: 0344da3b-5ea5-436d-ba29-cfb1a8e3420e┌─count()─┐
│  990999 │
└─────────┘1 row in set. Elapsed: 0.008 sec. Processed 1.00 million rows, 5.00 MB (128.59 million rows/s., 642.93 MB/s.)

成功删除

3.2 原理

查看磁盘目录

» ll
total 16
drwxr-x---@ 16 wjun  admin  512 Aug  9 21:09 20230808_1_1_0
drwxr-x---@ 18 wjun  admin  576 Aug  9 21:10 20230808_1_1_0_3
drwxr-x---@ 16 wjun  admin  512 Aug  9 21:09 20230809_2_2_0
drwxr-x---@ 15 wjun  admin  480 Aug  9 21:10 20230809_2_2_0_3
drwxr-x---@  2 wjun  admin   64 Aug  9 21:09 detached
-rw-r-----@  1 wjun  admin    1 Aug  9 21:09 format_version.txt
-rw-r-----@  1 wjun  admin  171 Aug  9 21:10 mutation_3.txt» du -h0B	./detached
7.7M	./20230809_2_2_0
7.7M	./20230808_1_1_00B	./20230809_2_2_0_328K	./20230808_1_1_0_315M	.

可以看出轻量删除依然是一个 mutation 操作,从system.mutations表也可以验证,但轻量删除生成的新的分区 20230808_1_1_0_3 仅 28K,那么轻量删除和 mutation 删除的区别在哪

查看 20230808_1_1_0_3 磁盘目录

wjun :: data/delete_operate/lightweight_operate ‹stable› » ll 20230808_1_1_0_3
total 15800
-rw-r-----@ 2 wjun  admin    18042 Aug  9 21:09 CreateTime.bin
-rw-r-----@ 2 wjun  admin      375 Aug  9 21:09 CreateTime.cmrk2
-rw-r-----@ 2 wjun  admin  4004938 Aug  9 21:09 Score.bin
-rw-r-----@ 2 wjun  admin      415 Aug  9 21:09 Score.cmrk2
-rw-r-----@ 2 wjun  admin  4004915 Aug  9 21:09 UserId.bin
-rw-r-----@ 2 wjun  admin      415 Aug  9 21:09 UserId.cmrk2
-rw-r-----@ 1 wjun  admin     4493 Aug  9 21:10 _row_exists.bin
-rw-r-----@ 1 wjun  admin      236 Aug  9 21:10 _row_exists.cmrk2
-rw-r-----@ 1 wjun  admin      589 Aug  9 21:10 checksums.txt
-rw-r-----@ 1 wjun  admin      110 Aug  9 21:10 columns.txt
-rw-r-----@ 2 wjun  admin        7 Aug  9 21:09 count.txt
-rw-r-----@ 1 wjun  admin       10 Aug  9 21:10 default_compression_codec.txt
-rw-r-----@ 1 wjun  admin        1 Aug  9 21:10 metadata_version.txt
-rw-r-----@ 2 wjun  admin        8 Aug  9 21:09 minmax_CreateTime.idx
-rw-r-----@ 2 wjun  admin        4 Aug  9 21:09 partition.dat
-rw-r-----@ 2 wjun  admin      173 Aug  9 21:09 primary.cidx

发现多了一组 _row_exists 文件而其余文件的 inode 连接数均为 2,也就是说轻量删除是真正的给字段添加了一个标记。

在查询的时候过滤

lightweight_deletes_v2_b891b54446

在分区合并的时候删除

lightweight_delete_merge_1_a2519ab507

比 mutation 轻的点在于轻量删除不会重构整个分区目录而是重写 _row_exists 文件这样涉及到的修改会少很多,至于分区的拷贝和不涉及删除操作的分区操作逻辑则和上面介绍的 mutation 流程一致

3.3 不足

轻量删除的设计思路相比之前的会好上很多,但 clickhouse 毕竟不是 TP 数据库,目前轻量删除依然存在一些问题和限制,如:

  1. 轻量删除是异步的,只有在分区合并的时候才会被真正删除(轻量删除执行完是逻辑上删除)
  2. 对 wide 类型分区友好,对于 compact 类型分区和 mutation 删除差别不大

相关文章:

clickhouse 删除操作

OLAP 数据库设计的宗旨在于分析适合一次插入多次查询的业务场景&#xff0c;市面上成熟的 AP 数据库在更新和删除操作上支持的均不是很好&#xff0c;当然 clickhouse 也不例外。但是不友好不代表不支持&#xff0c;本文主要介绍在 clickhouse 中如何实现数据的删除&#xff0c…...

C 语言中,「.」与「->」有什么区别?

使用“.”的话&#xff0c;只需要声明一个结构体。格式是结构体类型名结构体名。然后通过结构体名加上“.”再加上域名&#xff0c;就可以引用结构体的域了。因为结构体的内存是自动分配的&#xff0c;就像使用int a;一样。而使用“->”的话&#xff0c;需要声明一个结构体的…...

github pages 用法详解 发布自己的网站

github pages 基础用法 URL 规则 假设你的 github 帐号为 mygithub&#xff0c;需要发布的仓库名为 myrepo&#xff0c;那么 pages 的 URL 为&#xff1a; https://mygithub.github.io/myrepo 添加内容 用任意编辑器写好&#xff08;或者生成&#xff09;标准的网页内容&a…...

坤简炫酷的JQuery轮播图插件

介绍&#xff1a; 找到了一个炫酷的JQuery轮播图插件&#xff0c;只需要配置三四行代码就可以实现很多二维三维炫酷的切换效果。 视频效果及教程&#xff1a; https://www.bilibili.com/video/BV1Fu4y1d776/ 代码&#xff1a; https://github.com/w-x-x-w/AwesomeWeb 使用…...

C# 条件编译

C# 条件编译 C# 条件编译&#xff1a;根据不同的需求&#xff0c;编译生成不同的程序版本&#xff0c;条件编译是一种编译预处理命令&#xff0c;它是在编译代码之前对源代码进行处理。它可以根据条件&#xff0c;决定是否编译某段代码 条件编译的三种形式&#xff1a; 第一种…...

IntelliJ IDEA如何重新弹出git身份验证窗口

1、点击File菜单—>点击Settings—>点击Appearance & Behavior—>点击System Settings—>点击Passwords—>选中Do not save, forget passwords after restart—>点击Apply—>点击OK&#xff0c;如下所示&#xff1a; 2、重启IntelliJ IDEA—>通过g…...

【雕爷学编程】Arduino动手做(200)---WS2812B幻彩LED灯带4

37款传感器与模块的提法&#xff0c;在网络上广泛流传&#xff0c;其实Arduino能够兼容的传感器模块肯定是不止37种的。鉴于本人手头积累了一些传感器和执行器模块&#xff0c;依照实践出真知&#xff08;一定要动手做&#xff09;的理念&#xff0c;以学习和交流为目的&#x…...

【雕爷学编程】Arduino动手做(201)---DFRobot 行空板03

37款传感器与模块的提法&#xff0c;在网络上广泛流传&#xff0c;其实Arduino能够兼容的传感器模块肯定是不止37种的。鉴于本人手头积累了一些传感器和执行器模块&#xff0c;依照实践出真知&#xff08;一定要动手做&#xff09;的理念&#xff0c;以学习和交流为目的&#x…...

Spring中Bean的“一生”(生命周期)

文章目录 一、图解二、文字解析总结 一、图解 >注&#xff1a;处于同一行的执行顺序是从左往右 二、文字解析 SpringBean的生命周期总体分为四个阶段&#xff1a;实例化>属性注入>初始化>销毁 Step1 实例化Bean&#xff1a;根据配置文件中Bean的定义&#xff0c;…...

安卓:LitePal操作数据库

目录 一、LitePal介绍 常用方法&#xff1a; 1、插入数据&#xff1a; 2、更新数据&#xff1a; 3、删除数据&#xff1a; 4、查询数据&#xff1a; 二、LitePal的基本用法&#xff1a; 1、集成LitePal&#xff1a; 2、创建LitePal配置文件&#xff1a; 3、创建模型类…...

【JavaEE初阶】了解JVM

文章目录 一. JVM内存区域划分二. JVM类加载机制2.1 类加载整体流程2.2 类加载的时机2.3 双亲委派模型(经典) 三. JVM垃圾回收机制(GC)3.1 GC实际工作过程3.1.1 找到垃圾/判定垃圾1. 引用计数(不是java的做法,Python/PHP)2. 可达性分析(Java的做法) 3.1.2 清理垃圾1. 标记清除2…...

基于vue2.0和elementUi的vue农历日期组件vue-jlunar-datepicker(插件)

vue-jlunar-datepicker&#xff08;插件&#xff09; vue实现农历日历插件——vue-jlunar-datepicker插件 这个插件本身是基于vue2.0和elementUi框架来实现的。 安装 vue-jlunar-datepicker 插件 npm install vue-jlunar-datepicker --save // 如果安装过程中&#xff0c;出现…...

Python爬虫——selenium_元素定位

元素定位&#xff1a;自动化要做的就是模拟鼠标和键盘来操作这些元素&#xff0c;点击&#xff0c;输入等等。操作这些元素前首先要找到它们&#xff0c;WebDriver提供很多定位元素的方法 from selenium import webdriver# 创建浏览器对象 path files/chromedriver.exe brows…...

短视频内容平台(如TikTok、Instagram Reel、YouTube Shorts)的系统设计

现在&#xff0c;短视频内容已成为新趋势&#xff0c;每个人都在从TikTok、Instagram、YouTube等平台上消费这些内容。让我们看看如何为TikTok创建一个系统。 这样的应用程序看起来很小&#xff0c;但在后台有很多事情正在进行。以下是相关的挑战&#xff1a; •由于该应用程序…...

【git】Git 回退到指定版本:

文章目录 方法一: 使用 git reset 命令方法二&#xff1a;使用 git revert 命令方法三&#xff1a;使用 git checkout 命令常见的错误及其解决办法如下&#xff1a; 方法一: 使用 git reset 命令 命令可以将当前分支的 HEAD 指针指向指定的提交&#xff0c;从而回退代码到指定版…...

kibana+nginx配置密码 ubuntu

JAVA进阶之路-nginx设置密码 Kibana——通过Nginx代理Kibana并实现登陆认证 需要配置一下nginx文件 nginx配置文件详解 密码生成安装软件 apt install apache2-utils...

Git仓关联多个远程仓路径

前言 Git仓如果需要将代码push到多个仓&#xff0c;常用的做法是添加多个远程仓路径&#xff0c;然后分别push。这样虽然可以实现目的&#xff0c;但是需要多次执行push指令&#xff0c;很麻烦。 本文介绍关联多个远程仓路径且执行一次push指令的方法&#xff1a;git remote …...

使用ffmpeg将m4a及wav等文件转换为MP3格式

要使用ffmpeg将m4a及wav等文件转换为MP3格式&#xff0c;您可以按照以下步骤进行操作&#xff1a; 安装 ffmpeg 确保您已经安装了ffmpeg软件。如果没有安装&#xff0c;请访问ffmpeg的官方网站https://ffmpeg.org/ 并按照说明进行安装。 Win10 / Win11 可以通过 winget 命令…...

【CI/CD】Git Flow 分支模型

Git Flow 分支模型 1.前言 Git Flow 模型&#xff08;本文所阐述的分支模型&#xff09;构思于 2010 年&#xff0c;也就是 Git 诞生后不久&#xff0c;距今已有 10 多年。在这 10 多年中&#xff0c;Git Flow 在许多软件团队中大受欢迎。 在这 10 多年里&#xff0c;Git 本身…...

SpringBoot Thymeleaf模板引擎

Thymeleaf 模板引擎 前端交给我们的页面&#xff0c;是html页面。如果是我们以前开发&#xff0c;我们需要把他们转成jsp页面&#xff0c;jsp好处就是当我们查出一些数据转发到JSP页面以后&#xff0c;我们可以用jsp轻松实现数据的显示&#xff0c;及交互等。 jsp支持非常强大…...

UE5 学习系列(二)用户操作界面及介绍

这篇博客是 UE5 学习系列博客的第二篇&#xff0c;在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下&#xff1a; 【Note】&#xff1a;如果你已经完成安装等操作&#xff0c;可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作&#xff0c;重…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...