当前位置: 首页 > news >正文

AI文档识别技术之表格识别 (一)

AI文档识别技术之表格识别(一)

文章目录

文章目录

  • AI文档识别技术之表格识别(一)
    • 1. 表格识别原理介绍
      • 1.1 表格类型分类
      • 1.2 识别原理
    • 2. 整体识别流程
      • 2.1 流程图
      • 2.2 图像处理部分大致流程
    • 3. 将表格转换为html与json格式输出
      • 3.1 html格式
      • 3.2 json格式
      • 3.3 表格识别实例

前言

此文章主要介绍DocumentAI表格识别的V1版本,通过DocumentAI表格识别实现表格检测并实现表格还原结构

  • 表格检测:检测表格在图片中所处的区域
  • 表格还原结构:通过表格图片还原表格的结构信息,主要包括(行数,列数,合并单元格数)

目前DocumentAI表格识别已实现V2版本,大幅提升标准表格的识别准确率,具体信息会在下一篇blog中再具体说明

1. 表格识别原理介绍

1.1 表格类型分类

在现实生活中,表格大小、种类与样式复杂多样,例如表格中存在不同的背景填充,不同的行列合并方法,不同的内容文本类型等,并且现有文档既包括现代的、电子的文档,也有历史的、扫描的手写文档,它们的文档样式、所处光照环境以及纹理等都有比较大的差异,表格识别一直是文档识别领域的研究难点。

DocumentAI表格识别将表格分为两类,一种为标准表格,另一种为非标准表格:

  • 标准表格:表格边框完整,表格内线完整且清晰,无需人为再添加表格线条做表格内容分割

在这里插入图片描述

标准表格图片

  • 非标准表格:缺少表格边框或者表格内线,表格线条不清晰,需要人为添加表格线条分割表格内容,例如下面的表格就缺少很多的横线与竖线

在这里插入图片描述

​ 非标准图片

1.2 识别原理

DocumentAI通过结合AI与传统算法实现表格识别,主要用到的AI能力与算法有:

  • AI:版面分析能力(通过AI版面分析检测表格在图片内所处的区域)
  • AI:OCR能力(通过OCR实现识别表格内容)
  • 算法:图像处理算法(通过结合图像处理算法辅助获取表格结构信息)

通过以上的AI与算法再结合一些表格识别算法即可实现通用表格识别,同时支持识别标准表格与非标准表格

2. 整体识别流程

2.1 流程图

在这里插入图片描述

2.2 图像处理部分大致流程

图像处理的大致流程为:

  1. 对输入的表格图片进行预处理
  2. 通过形态学算法过滤非线条信息
  3. 检测线条与block得到表格的基础信息

3. 将表格转换为html与json格式输出

3.1 html格式

通过输出表格的html格式更方便用户的结果可视化与调试

3.2 json格式

通过json格式更方便的在各语言之间传输表格数据

3.3 表格识别实例

在这里插入图片描述

​ 原图

在这里插入图片描述

​ html展示结果

{

“type”: “table_with_line”, //表格类型

“angle”: 0, //表格倾斜角度

“width”: 572, //表格宽度

“height”: 93, //表格高度

“rows”: 3, //表格行数

“cols”: 3, //表格列数

“position”: [111, 266, 683, 266, 683, 359, 111, 359], //表格位置

“height_of_rows”: [32, 30, 31], //表格每一行的高度

“width_of_cols”: [190, 190, 191], //表格每一列的宽度

“table_cells”: [ //表格内所有单元格的信息

{

“start_row”: 1, //单元格所在开始行号

“end_row”: 1, //单元格所在结束行号

“start_col”: 1, //单元格所在开始列号

“end_col”: 1, //单元格所在结束列号

“text”: “”, //单元格文本内容

“position”: [0, 0, 190, 0, 190, 32, 0, 32], //单元格位置

“lines”: [] //单元格文本行信息

},

…, // 其余单元格

{

“start_row”: 3,

“end_row”: 3,

“start_col”: 3,

“end_col”: 3,

“text”: “23%”,

“position”: [380, 62, 571, 62, 571, 93, 380, 93],

“lines”: [

​ {

​ “text”: “23%”,

​ “score”: 1,

​ “position”: [458, 70, 491, 70, 491, 93, 458, 93]

​ }

]

}

]

}

​ 表格json结果

相关文章:

AI文档识别技术之表格识别 (一)

AI文档识别技术之表格识别(一) 文章目录 文章目录 AI文档识别技术之表格识别(一)1. 表格识别原理介绍1.1 表格类型分类1.2 识别原理 2. 整体识别流程2.1 流程图2.2 图像处理部分大致流程 3. 将表格转换为html与json格式输出3.1 html格式3.2 json格式3.3 表格识别实例 前言 此文…...

uni-app 支持 app端, h5端,微信小程序端 图片转换文件格式 和 base64

uni-app 支持 app端 h5端,微信小程序端 图片转换文件格式 和 base64,下方是插件市场的地址app端 h5端,微信小程序端 图片转换文件格式 和 base64 - DCloud 插件市场 https://ext.dcloud.net.cn/plugin?id13926...

云计算——存储虚拟化简介 与 存储模式及方法

作者简介:一名云计算网络运维人员、每天分享网络与运维的技术与干货。 座右铭:低头赶路,敬事如仪 个人主页:网络豆的主页​​​​​ 目录 前期回顾 前言 一.存储虚拟化介绍 1.云计算存储基本概念 2.云计算存储模型 3.创…...

数据资产目录建设之数据分类全解

01 数据治理“洗澡论” 其实他们之前做过数据一轮数据资产盘点,做了一个分类,也挂到系统上了,但是后来就没有后来了。治理做一半,等于啥也没干。 我之前在群里开了一个玩笑,数据治理这种事情,就跟洗澡一…...

大模型的数据隐私问题有解了,浙江大学提出联邦大语言模型

作者 | 小戏、Python 理想化的 Learning 的理论方法作用于现实世界总会面临着诸多挑战,从模型部署到模型压缩,从数据的可获取性到数据的隐私问题。而面对着公共领域数据的稀缺性以及私有领域的数据隐私问题,联邦学习(Federated Le…...

flask-sqlalchemy使用

# sqlalchemy 集成到flask中 # 第三方: flask-sqlalchemy 封装了用起来,更简洁 安装 pip install flask-sqlalchemy 使用 # 使用flask-sqlalchemy集成1 导入 from flask_sqlalchemy import SQLAlchemy2 实例化得到对象db SQLAlchemy()3 将db注册到app中db.in…...

flask处理token的装饰器

以下是在 Flask 中基于 token 实现的登录验证装饰器的示例代码: import jwt from functools import wraps from flask import request, jsonify, current_appdef login_required(f):wraps(f)def decorated_function(*args, **kwargs):token request.headers.get(A…...

【Express.js】页面渲染

页面渲染 常见的页面分为两种,一种是静态页面,比如用 Vue、React 等写好的静态页面,另一种是动态模板页面,如 Thymeleaf,JSP 等。 本节将简要介绍如何在 express 中渲染静态页面,以及适用于 express 的模…...

2.UE数字人语音交互(UE数字人系统教程)

上一篇:1.Fay-UE5数字人工程导入 2.UE数字人语音交互(UE数字人系统教程) 1、启动ue数字人 2、下载Fay数字人控制器 Fay数字人控制器下载地址 3、依照说明配置运行Fay 4、启动Fay控制器 5、切换到UE界面开始说话 6、完成了&#xf…...

C语言——水仙花数字

//水仙花数字 //每个数位上的数字的 3次幂之和等于它本身 //列如&#xff1a;1531^35^33^3 #include<stdio.h> int main() {int i,x,y,z;for(i100;i<1000;i){xi%10;yi/10%10;zi/100%10;if(i(x*x*xy*y*yz*z*z))printf("%d\n",i);}return 0; } //输出100-1000…...

java中list对象拷贝至新的list对象并保持两个对象独立的方法

在Java中&#xff0c;如果你想拷贝一个List对象到一个新的List对象&#xff0c;并且修改原来的List不影响新的List中的内容&#xff0c;有几种方法可以实现&#xff1a;使用构造函数&#xff1a; 可以使用List的构造函数&#xff0c;传递原始List作为参数来创建一个新的List对象…...

使用AI工具Lama Cleaner一键去除水印、人物、背景等图片里的内容

使用AI工具Lama Cleaner一键去除水印、人物、背景等图片里的内容 前言前提条件相关介绍Lama Cleaner环境要求安装Lama Cleaner启动Lama CleanerCPU方式启动GPU方式启动 使用Lama Cleaner测试结果NO.1 检测框NO.2 水印NO.3 广州塔NO.4 人物背景 参考 前言 由于本人水平有限&…...

瑞数系列及顶像二次验证LOGS

瑞数商标局药监局专利局及顶像二次验证 日期&#xff1a;20230808 瑞数信息安全是一个专注于信息安全领域的公司&#xff0c;致力于为企业和个人提供全面的信息安全解决方案。他们的主要业务包括网络安全、数据安全、应用安全、云安全等方面的服务和产品。瑞数信息安全拥有一支…...

Anaconda版本和Python版本对应关系(持续更新...)

简介 Anaconda是包管理工具,是专注于数据分析的Python发行版本&#xff0c;其包含Python和许多常用软件包&#xff0c;不同的Anaconda版本里面也配备了不同的Python版本&#xff0c;并且Python的出现时间比Anaconda早很多&#xff1b;相对而言&#xff0c;python原生的pip安装方…...

vscode 搭建STM32开发环境

1.需要软件 1.1 vscode 1.2 STM32CubeMX&#xff0c;这个不是必须的&#xff0c;我是为了方便生成STM32代码 2.vscode配置 2.1安装keil Assistant 2.2配置keil Assistant 3.STMCUBE生成个STM32代码 &#xff0c;如果有自己的代码可以忽略 4.代码添加到vscode&#xff0c;并…...

6款好用的思维导图在线制作网站盘点,拒绝低效、探索创意!

思维导图以其直观、系统的特性&#xff0c;成为了我们理清思路、整理信息的强大助手。利用好思维导图&#xff0c;我们可以更好地理解信息、链接概念&#xff0c;进一步提高我们的学习和工作效率。 在众多制作思维导图的软件中&#xff0c;在线思维导图制作网站更是因其…...

js的Promise

目录 异步任务回调地域Promise Promise的三种状态resolve传入值 Promise的实例方法thenthen的返回值返回Promise的状态 catchcatch的返回值 finally Promise的类方法resolverejectallallSettledraceany 异步任务 在js中&#xff0c;有些任务并不是立即执行的&#xff0c;如set…...

2.4g无线芯片G350规格书详细介绍

G350是一款高度集成的2.4GHz无线收发芯片&#xff0c;旨在为各种应用提供低成本、高性能的无线通信解决方案。该芯片通过降低功耗&#xff0c;在保持寄存器值条件下&#xff0c;实现最低电流为5μA&#xff0c;从而显著提高了电池寿命。它内置了发射接收FIFO寄存器&#xff0c;…...

React中使用mobx管理状态数据使用样例

MobX 是一个身经百战的库&#xff0c;它通过运用透明的函数式响应编程&#xff08;Transparent Functional Reactive Programming&#xff0c;TFRP&#xff09;使状态管理变得简单和可扩展。官网地址&#xff1a;关于 MobX | MobX中文文档 | MobX中文网 安装依赖 mobx-react-…...

《HeadFirst设计模式(第二版)》第五章代码——单例模式

代码文件目录&#xff1a; 初始版本&#xff1a; package Chapter5_SingletonPattern.origin;/*** Author 竹心* Date 2023/8/5**/public class Singleton {private static Singleton uniqueInstance;private Singleton(){}public static Singleton getInstance(){if(uniqueIn…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

命令行关闭Windows防火墙

命令行关闭Windows防火墙 引言一、防火墙:被低估的"智能安检员"二、优先尝试!90%问题无需关闭防火墙方案1:程序白名单(解决软件误拦截)方案2:开放特定端口(解决网游/开发端口不通)三、命令行极速关闭方案方法一:PowerShell(推荐Win10/11)​方法二:CMD命令…...

Java多线程实现之Runnable接口深度解析

Java多线程实现之Runnable接口深度解析 一、Runnable接口概述1.1 接口定义1.2 与Thread类的关系1.3 使用Runnable接口的优势 二、Runnable接口的基本实现方式2.1 传统方式实现Runnable接口2.2 使用匿名内部类实现Runnable接口2.3 使用Lambda表达式实现Runnable接口 三、Runnabl…...

OCC笔记:TDF_Label中有多个相同类型属性

注&#xff1a;OCCT版本&#xff1a;7.9.1 TDF_Label中有多个相同类型的属性的方案 OCAF imposes the restriction that only one attribute type may be allocated to one label. It is necessary to take into account the design of the application data tree. For exampl…...

论文阅读笔记——Large Language Models Are Zero-Shot Fuzzers

TitanFuzz 论文 深度学习库&#xff08;TensorFlow 和 Pytorch&#xff09;中的 bug 对下游任务系统是重要的&#xff0c;保障安全性和有效性。在深度学习&#xff08;DL&#xff09;库的模糊测试领域&#xff0c;直接生成满足输入语言(例如 Python )语法/语义和张量计算的DL A…...