当前位置: 首页 > news >正文

python实现简单的爬虫功能

前言

Python是一种广泛应用于爬虫的高级编程语言,它提供了许多强大的库和框架,可以轻松地创建自己的爬虫程序。在本文中,我们将介绍如何使用Python实现简单的爬虫功能,并提供相关的代码实例。

如何实现简单的爬虫

1. 导入必要的库和模块

在编写Python爬虫时,我们需要使用许多库和模块,其中最重要的是requests和BeautifulSoup。Requests库可以帮助我们发送HTTP请求,并从网站上获取数据,而BeautifulSoup可以帮助我们从HTML文件中提取所需的信息。因此,我们需要首先导入这两个库。

import requests
from bs4 import BeautifulSoup

2. 发送HTTP请求

在爬虫程序中,我们需要向网站发送HTTP请求,通常使用GET方法。Requests库提供了一个get()函数,我们可以使用它来获取网站的HTML文件。这个函数需要一个网站的URL作为参数,并返回一个包含HTML文件的响应对象。我们可以使用text属性来访问HTML文件的文本内容。

url = "https://www.example.com"
response = requests.get(url)
html = response.text

在发送HTTP请求时,我们需要注意是否需要添加用户代理和头信息。有些网站会检查用户代理和头信息,如果没有正确的值,它们就会拒绝我们的请求。为了避免这种情况,我们可以在HTTP请求中添加用户代理和头信息。我们可以使用requests库的headers选项来添加头信息。

headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"}response = requests.get(url, headers=headers)

3. 解析HTML文件

在获取了网站的HTML文件之后,我们需要从中提取我们想要的信息。为此,我们需要使用BeautifulSoup库,它提供了许多强大的函数和方法,可以轻松地解析HTML文件。

我们可以使用BeautifulSoup函数将HTML文件转换为BeautifulSoup对象。然后,我们可以使用find()、find_all()等方法来查找HTML文件中的元素。这些方法需要一个标签名称作为参数,并返回一个包含所选元素的列表或单个元素。

soup = BeautifulSoup(html, "html.parser")
title = soup.find("title").text

为了从HTML文件中提取更多的信息,我们需要了解CSS选择器。CSS选择器是一种用于选择HTML元素的语法,类似于CSS中的样式选择器。我们可以使用CSS选择器来获取HTML文件中特定元素的信息。例如,我们可以使用select()方法和一个CSS选择器来选择一个类别的所有元素。

items = soup.select(".item")
for item in items:title = item.select(".title")[0].textprice = item.select(".price")[0].text

4. 存储数据

在爬取数据后,我们可能需要将数据存储到本地文件或数据库中。Python提供了许多方式来实现这一点,例如使用CSV、JSON或SQLite等格式来存储数据。

如果我们要将数据保存到CSV文件中,我们可以使用csv库。这个库提供了一个writer()函数,我们可以使用它来创建一个CSV写入器。然后,我们可以使用writerow()方法向CSV文件中写入数据。

import csvwith open("data.csv", "w", newline="") as file:writer = csv.writer(file)writer.writerow(["Title", "Price"])for item in items:title = item.select(".title")[0].textprice = item.select(".price")[0].textwriter.writerow([title, price])

如果我们要将数据保存到SQLite数据库中,我们可以使用sqlite3库。这个库提供了一个链接到数据库的函数connect()和一个游标对象,我们可以使用它来执行SQL查询。

import sqlite3conn = sqlite3.connect("data.db")
cursor = conn.cursor()
cursor.execute("CREATE TABLE items (title TEXT, price TEXT)")for item in items:title = item.select(".title")[0].textprice = item.select(".price")[0].textcursor.execute("INSERT INTO items VALUES (?, ?)", (title, price))conn.commit()
conn.close()

完整的代码示例:

import requests
from bs4 import BeautifulSoup
import csv
import sqlite3def get_data():url = "https://www.example.com"headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"}response = requests.get(url, headers=headers)html = response.textsoup = BeautifulSoup(html, "html.parser")title = soup.find("title").textitems = soup.select(".item")data = []for item in items:title = item.select(".title")[0].textprice = item.select(".price")[0].textdata.append((title, price))return title, datadef save_csv(title, data):with open("data.csv", "w", newline="") as file:writer = csv.writer(file)writer.writerow(["Title", "Price"])for item in data:writer.writerow(item)def save_sqlite(title, data):conn = sqlite3.connect("data.db")cursor = conn.cursor()cursor.execute("CREATE TABLE items (title TEXT, price TEXT)")for item in data:cursor.execute("INSERT INTO items VALUES (?, ?)", item)conn.commit()conn.close()title, data = get_data()
save_csv(title, data)
save_sqlite(title, data)

总结

本文介绍了如何使用Python实现简单的爬虫功能,并提供了相关的代码示例。使用这些代码,您可以轻松地从网站上获取所需的数据,并将它们存储到本地文件或数据库中。在编写爬虫程序时,请务必尊重网站的使用规则,并避免过度频繁地发出HTTP请求,以避免对网站造成不必要的负担。

相关文章:

python实现简单的爬虫功能

前言 Python是一种广泛应用于爬虫的高级编程语言,它提供了许多强大的库和框架,可以轻松地创建自己的爬虫程序。在本文中,我们将介绍如何使用Python实现简单的爬虫功能,并提供相关的代码实例。 如何实现简单的爬虫 1. 导入必要的…...

AI文档识别技术之表格识别 (一)

AI文档识别技术之表格识别(一) 文章目录 文章目录 AI文档识别技术之表格识别(一)1. 表格识别原理介绍1.1 表格类型分类1.2 识别原理 2. 整体识别流程2.1 流程图2.2 图像处理部分大致流程 3. 将表格转换为html与json格式输出3.1 html格式3.2 json格式3.3 表格识别实例 前言 此文…...

uni-app 支持 app端, h5端,微信小程序端 图片转换文件格式 和 base64

uni-app 支持 app端 h5端,微信小程序端 图片转换文件格式 和 base64,下方是插件市场的地址app端 h5端,微信小程序端 图片转换文件格式 和 base64 - DCloud 插件市场 https://ext.dcloud.net.cn/plugin?id13926...

云计算——存储虚拟化简介 与 存储模式及方法

作者简介:一名云计算网络运维人员、每天分享网络与运维的技术与干货。 座右铭:低头赶路,敬事如仪 个人主页:网络豆的主页​​​​​ 目录 前期回顾 前言 一.存储虚拟化介绍 1.云计算存储基本概念 2.云计算存储模型 3.创…...

数据资产目录建设之数据分类全解

01 数据治理“洗澡论” 其实他们之前做过数据一轮数据资产盘点,做了一个分类,也挂到系统上了,但是后来就没有后来了。治理做一半,等于啥也没干。 我之前在群里开了一个玩笑,数据治理这种事情,就跟洗澡一…...

大模型的数据隐私问题有解了,浙江大学提出联邦大语言模型

作者 | 小戏、Python 理想化的 Learning 的理论方法作用于现实世界总会面临着诸多挑战,从模型部署到模型压缩,从数据的可获取性到数据的隐私问题。而面对着公共领域数据的稀缺性以及私有领域的数据隐私问题,联邦学习(Federated Le…...

flask-sqlalchemy使用

# sqlalchemy 集成到flask中 # 第三方: flask-sqlalchemy 封装了用起来,更简洁 安装 pip install flask-sqlalchemy 使用 # 使用flask-sqlalchemy集成1 导入 from flask_sqlalchemy import SQLAlchemy2 实例化得到对象db SQLAlchemy()3 将db注册到app中db.in…...

flask处理token的装饰器

以下是在 Flask 中基于 token 实现的登录验证装饰器的示例代码: import jwt from functools import wraps from flask import request, jsonify, current_appdef login_required(f):wraps(f)def decorated_function(*args, **kwargs):token request.headers.get(A…...

【Express.js】页面渲染

页面渲染 常见的页面分为两种,一种是静态页面,比如用 Vue、React 等写好的静态页面,另一种是动态模板页面,如 Thymeleaf,JSP 等。 本节将简要介绍如何在 express 中渲染静态页面,以及适用于 express 的模…...

2.UE数字人语音交互(UE数字人系统教程)

上一篇:1.Fay-UE5数字人工程导入 2.UE数字人语音交互(UE数字人系统教程) 1、启动ue数字人 2、下载Fay数字人控制器 Fay数字人控制器下载地址 3、依照说明配置运行Fay 4、启动Fay控制器 5、切换到UE界面开始说话 6、完成了&#xf…...

C语言——水仙花数字

//水仙花数字 //每个数位上的数字的 3次幂之和等于它本身 //列如&#xff1a;1531^35^33^3 #include<stdio.h> int main() {int i,x,y,z;for(i100;i<1000;i){xi%10;yi/10%10;zi/100%10;if(i(x*x*xy*y*yz*z*z))printf("%d\n",i);}return 0; } //输出100-1000…...

java中list对象拷贝至新的list对象并保持两个对象独立的方法

在Java中&#xff0c;如果你想拷贝一个List对象到一个新的List对象&#xff0c;并且修改原来的List不影响新的List中的内容&#xff0c;有几种方法可以实现&#xff1a;使用构造函数&#xff1a; 可以使用List的构造函数&#xff0c;传递原始List作为参数来创建一个新的List对象…...

使用AI工具Lama Cleaner一键去除水印、人物、背景等图片里的内容

使用AI工具Lama Cleaner一键去除水印、人物、背景等图片里的内容 前言前提条件相关介绍Lama Cleaner环境要求安装Lama Cleaner启动Lama CleanerCPU方式启动GPU方式启动 使用Lama Cleaner测试结果NO.1 检测框NO.2 水印NO.3 广州塔NO.4 人物背景 参考 前言 由于本人水平有限&…...

瑞数系列及顶像二次验证LOGS

瑞数商标局药监局专利局及顶像二次验证 日期&#xff1a;20230808 瑞数信息安全是一个专注于信息安全领域的公司&#xff0c;致力于为企业和个人提供全面的信息安全解决方案。他们的主要业务包括网络安全、数据安全、应用安全、云安全等方面的服务和产品。瑞数信息安全拥有一支…...

Anaconda版本和Python版本对应关系(持续更新...)

简介 Anaconda是包管理工具,是专注于数据分析的Python发行版本&#xff0c;其包含Python和许多常用软件包&#xff0c;不同的Anaconda版本里面也配备了不同的Python版本&#xff0c;并且Python的出现时间比Anaconda早很多&#xff1b;相对而言&#xff0c;python原生的pip安装方…...

vscode 搭建STM32开发环境

1.需要软件 1.1 vscode 1.2 STM32CubeMX&#xff0c;这个不是必须的&#xff0c;我是为了方便生成STM32代码 2.vscode配置 2.1安装keil Assistant 2.2配置keil Assistant 3.STMCUBE生成个STM32代码 &#xff0c;如果有自己的代码可以忽略 4.代码添加到vscode&#xff0c;并…...

6款好用的思维导图在线制作网站盘点,拒绝低效、探索创意!

思维导图以其直观、系统的特性&#xff0c;成为了我们理清思路、整理信息的强大助手。利用好思维导图&#xff0c;我们可以更好地理解信息、链接概念&#xff0c;进一步提高我们的学习和工作效率。 在众多制作思维导图的软件中&#xff0c;在线思维导图制作网站更是因其…...

js的Promise

目录 异步任务回调地域Promise Promise的三种状态resolve传入值 Promise的实例方法thenthen的返回值返回Promise的状态 catchcatch的返回值 finally Promise的类方法resolverejectallallSettledraceany 异步任务 在js中&#xff0c;有些任务并不是立即执行的&#xff0c;如set…...

2.4g无线芯片G350规格书详细介绍

G350是一款高度集成的2.4GHz无线收发芯片&#xff0c;旨在为各种应用提供低成本、高性能的无线通信解决方案。该芯片通过降低功耗&#xff0c;在保持寄存器值条件下&#xff0c;实现最低电流为5μA&#xff0c;从而显著提高了电池寿命。它内置了发射接收FIFO寄存器&#xff0c;…...

React中使用mobx管理状态数据使用样例

MobX 是一个身经百战的库&#xff0c;它通过运用透明的函数式响应编程&#xff08;Transparent Functional Reactive Programming&#xff0c;TFRP&#xff09;使状态管理变得简单和可扩展。官网地址&#xff1a;关于 MobX | MobX中文文档 | MobX中文网 安装依赖 mobx-react-…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...

uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)

UniApp 集成腾讯云 IM 富媒体消息全攻略&#xff08;地理位置/文件&#xff09; 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型&#xff0c;核心实现方式&#xff1a; 标准消息类型&#xff1a;直接使用 SDK 内置类型&#xff08;文件、图片等&#xff09;自…...