ubuntu clion从0开始搭建一个风格转换ONNX推理网络 opencv cuda::dnn::net
系统搭建
- 系统搭建
OpenCV的安装
cmake
sudo apt-get install cmake
其他环境以来
sudo apt-get install build-essential libgtk2.0-dev libavcodec-dev libavformat-dev libjpeg.dev libtiff5.dev libswscale-dev libjasper-dev
- 不安装会报这个错误
OpenCV(4.6.0) /home/dell/下载/opencv-4.6.0/modules/highgui/src/window.cpp:1250: error: (-2:Unspecified error) The function is not implemented. Rebuild the library with Windows, GTK+ 2.x or Cocoa support. If you are on Ubuntu or Debian, install libgtk2.0-dev and pkg-config, then re-run cmake or configure script in function 'cvNamedWindow'
error
- E: 无法定位软件包 libjasper-dev
解决(换源重新安装)
- http://mirrors.ustc.edu.cn/help/ubuntu.html
sudo add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main"
sudo apt update
- 由于没有公钥,无法验证下列签名: NO_PUBKEY 40976EAF437D05B5 NO_PUBKEY 3B4FE6AC
sudo apt-key adv --recv-keys --keyserver keyserver.ubuntu.com 40976EAF437D05B5 3B4FE6ACC0B21F32
下载源码
https://github.com/opencv/opencv/releases
增强模块 https://github.com/opencv/opencv_contrib/tags
安装
unzip opencv-4.6.0.zipunzip opencv_contrib-4.6.0.zipcd opencv-4.6.0/sudo mkdir buildcd buildsudo cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local
或sudo cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local -D OPENCV_EXTRA_MODULES_PATH= **/opencv_contrib-4.6.0/modules/ ..
error
- 如果报错
CMake Error: The source directory "/home/dell/下载/opencv-4.6.0/build" does not appear to contain CMakeLists.txt.使用sudo cmake /home/dell/下载/opencv-4.6.0/ -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local

sudo make或sudo make -j4j为变异是使用的核心数量,这一步非常满sudo make install
-- Installing: /usr/local/share/opencv4/lbpcascades/lbpcascade_profileface.xml
-- Installing: /usr/local/share/opencv4/lbpcascades/lbpcascade_silverware.xml
-- Installing: /usr/local/bin/opencv_annotation
-- Set runtime path of "/usr/local/bin/opencv_annotation" to "/usr/local/lib"
-- Installing: /usr/local/bin/opencv_visualisation
-- Set runtime path of "/usr/local/bin/opencv_visualisation" to "/usr/local/lib"
-- Installing: /usr/local/bin/opencv_interactive-calibration
-- Set runtime path of "/usr/local/bin/opencv_interactive-calibration" to "/usr/local/lib"
-- Installing: /usr/local/bin/opencv_version
-- Set runtime path of "/usr/local/bin/opencv_version" to "/usr/local/lib"
-- Installing: /usr/local/bin/opencv_model_diagnostics
-- Set runtime path of "/usr/local/bin/opencv_model_diagnostics" to "/usr/local/lib"
环境变量
sudo vim /etc/ld.so.conf.d/opencv.confi/usr/local/lib+ esc + :wq + enter

sudo ldconfigsudo vim /etc/bash.bashrc
PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig
export PKG_CONFIG_PATH
sudo updatedb
或者按照这种方式配置
测试
cmake_minimum_required(VERSION 3.15)
project(untitled)
set(CMAKE_CXX_STANDARD 14)MESSAGE(STATUS "Project: untitled") #打印相关消息消息
find_package(OpenCV REQUIRED)# 通过find_package引入非官方的库(该方式只对支持cmake编译安装的库有效)
set(SOURCE_FILES main.cpp)
include_directories(${OpenCV_INCLUDE_DIRS})add_executable(untitled main.cpp)
target_link_libraries(untitled ${OpenCV_LIBS})
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;int main() {string path = "/home/dell/下载/a.png";Mat src = imread(path);namedWindow("img");imshow("img",src);waitKey(0);return 0;
}

- 重启一下就ok了

- 结果

onnx
效果风格转换

网络的论文和ONNX下载


- 下载地址

blobFromImages(blobFromImage) + imagesFromBlob
处理图像到blob,[0, 255] ->[0, 1],大小,RGB->BGR和转换forward的blob到图像。

网络传播整体代码
cmake_minimum_required(VERSION 3.15)
project(untitled)
set(CMAKE_CXX_STANDARD 14)MESSAGE(STATUS "Project: untitled")
find_package(OpenCV REQUIRED)
set(SOURCE_FILES main.cpp)
include_directories(${OpenCV_INCLUDE_DIRS})add_executable(untitled main.cpp)
target_link_libraries(untitled ${OpenCV_LIBS})
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <iostream>
#include <fstream>using namespace cv;
using namespace cv::dnn;
using namespace std;// 图像处理 标准化处理
void PreProcess(const Mat& image, Mat& image_blob)
{Mat input;image.copyTo(input);//数据处理 标准化std::vector<Mat> channels, channel_p;split(input, channels);Mat R, G, B;B = channels.at(0);G = channels.at(1);R = channels.at(2);B = (B / 255. - 0.406) / 0.225;G = (G / 255. - 0.456) / 0.224;R = (R / 255. - 0.485) / 0.229;channel_p.push_back(R);channel_p.push_back(G);channel_p.push_back(B);Mat outt;merge(channel_p, outt);image_blob = outt;
}String bin_model = "/home/dell/CLionProjects/untitled/mosaic-9.onnx";
int main(int argc, char** argv) {//数据处理Mat test = Mat::zeros(10,10, CV_64FC1 );Mat image1 = imread("/home/dell/下载/a.png");resize(image1, image1, Size(256, 256), INTER_AREA);image1.convertTo(image1, CV_32FC3);// convertTo()数据类型CV_32FC3PreProcess(image1, image1);vector<Mat> images;images.push_back(image1);images.push_back(image1);int w = 224;int h = 224;// 加载网络cv::dnn::Net net = cv::dnn::readNetFromONNX(bin_model); // 加载训练好的识别模型 net = cv2.dnn.readNetFromONNX('**.onnx')net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);if (net.empty()) {printf("read onnx model data failure...\n");return -1;}Mat inputBlob = blobFromImages(images, 1.0, Size(w, h), Scalar(0, 0, 0), false, true);net.setInput(inputBlob);cv::Mat prob = net.forward(); // 推理出结果 cols,rows 矩阵的行数,列数【注意,在图像中行数对应的是高度,列数对应的是宽度】,当维数大于2时,均为-1; std::vector<cv::Mat> predTmp;cv::dnn::imagesFromBlob(prob, predTmp);imshow("show Image", images[0]);cv::waitKey(0);imshow("Image mosaic", predTmp[0]);cv::waitKey(0);vector<double> times;double time = net.getPerfProfile(times);float ms = (time * 1000) / getTickFrequency();printf("current inference time : %.2f ms \n", ms);return 0;
}
CG
- clion中debug不生效

代码 onnx+ opdncv+vgg16
// https://blog.csdn.net/qq_44747572/article/details/121467657
// /home/dell/下载/opencv-4.6.0/samples/data/dnn/classification_classes_ILSVRC2012.txt#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <iostream>
#include <fstream>using namespace cv;
using namespace cv::dnn;
using namespace std;// 图像处理 标准化处理
void PreProcess(const Mat& image, Mat& image_blob)
{Mat input;image.copyTo(input);//数据处理 标准化std::vector<Mat> channels, channel_p;split(input, channels);Mat R, G, B;B = channels.at(0);G = channels.at(1);R = channels.at(2);B = (B / 255. - 0.406) / 0.225;G = (G / 255. - 0.456) / 0.224;R = (R / 255. - 0.485) / 0.229;channel_p.push_back(R);channel_p.push_back(G);channel_p.push_back(B);Mat outt;merge(channel_p, outt);image_blob = outt;
}std::vector<String> readClassNames(string labels_txt_file)
{std::vector<String> classNames;std::ifstream fp(labels_txt_file);if (!fp.is_open()){printf("could not open file...\n");exit(-1);}std::string name;while (!fp.eof()){std::getline(fp, name);if (name.length())classNames.push_back(name);}fp.close();return classNames;
}String bin_model = "/home/dell/下载/vgg16.onnx";
String labels_txt_file = "/home/dell/下载/opencv-4.6.0/samples/data/dnn/classification_classes_ILSVRC2012.txt";
vector<String> readClassNames(); // string对象作为vector对象
int main(int argc, char** argv) {Mat image1 = imread("/home/dell/下载/a.png");//用于显示vector<Mat>Showimages;Showimages.push_back(image1);//处理image1resize(image1, image1, Size(256, 256), INTER_AREA);image1.convertTo(image1, CV_32FC3);PreProcess(image1, image1); //标准化处理//将image1和image2合并到imagesvector<Mat> images;images.push_back(image1);images.push_back(image1);vector<String> labels = readClassNames(labels_txt_file);int w = 224;int h = 224;// 加载网络cv::dnn::Net net = cv::dnn::readNetFromONNX(bin_model); // 加载训练好的识别模型if (net.empty()) {printf("read onnx model data failure...\n");return -1;}Mat inputBlob = blobFromImages(images, 1.0, Size(w, h), Scalar(0, 0, 0), false, true);// 执行图像分类net.setInput(inputBlob);cv::Mat prob = net.forward(); // 推理出结果cout << prob.cols<< endl;vector<double> times;double time = net.getPerfProfile(times);float ms = (time * 1000) / getTickFrequency();printf("current inference time : %.2f ms \n", ms);// 得到最可能分类输出for (int n = 0; n < prob.rows; n++) {Point classNumber;double classProb;Mat probMat = prob(Rect(0, n, 1000, 1)).clone();Mat result = probMat.reshape(1, 1);minMaxLoc(result, NULL, &classProb, NULL, &classNumber);int classidx = classNumber.x;printf("\n current image classification : %s, possible : %.2f\n", labels.at(classidx).c_str(), classProb);// 显示文本putText(Showimages[n], labels.at(classidx), Point(10, 20), FONT_HERSHEY_SIMPLEX, 0.6, Scalar(0, 0, 255), 1, 1);imshow("Image Classification", Showimages[n]);waitKey(0);}return 0;
}相关文章:
ubuntu clion从0开始搭建一个风格转换ONNX推理网络 opencv cuda::dnn::net
系统搭建 系统搭建 OpenCV的安装 cmake sudo apt-get install cmake其他环境以来 sudo apt-get install build-essential libgtk2.0-dev libavcodec-dev libavformat-dev libjpeg.dev libtiff5.dev libswscale-dev libjasper-dev 不安装会报这个错误 OpenCV(4.6.0) /hom…...
1.十大排序算法
1.什么是排序算法? 在梳理十大排序算法之前,虽然知道排序算法是将数字或字母按增序排列的算法,但该理解过于片面,那排序算法的权威定义是什么呢。 一个排序算法(英语:Sorting algorithm)是一种…...
算法导论—SAT、NP、NPC、NP-Hard问题
算法导论—SAT、NP、NP-Hard、NPC问题SAT 问题基本定义问题复杂性P、NP、NP-Hard、NP-Complete(NPC)证明NP-Hard关系图NP问题的概念约化的定义NPC问题NP-Hard问题SAT 问题基本定义 SAT 问题 (Boolean satisfiability problem, 布尔可满足性问题,SAT): 给…...
linux入门---基础指令(上)
这里写目录标题前言ls指令pwd指令cd指令touch指令mkdirrmdirrmman指令cp指令mv指令前言 我们平时使用电脑主要是通过鼠标键盘以及操作系统中自带的图形来对电脑执行相应的命令,比如说我想打开D盘中的cctalk这个文件: 我就可以先用鼠标左键单击这个文件…...
大数据Kylin(一):基础概念和Kylin简介
文章目录 基础概念和Kylin简介 一、OLTP与OLAP 1、OLTP 2、OLAP 3、OLTP与OLAP的关系 二、数据分析模型 1、星型模型 2、雪花模型 …...
推进行业生态发展完善,中国信通院第八批RPA评测工作正式启动
随着人工智能、云计算、大数据等新兴数字技术的高速发展,数字劳动力应用实践步伐加快,以数字生产力、数字创造力为基础的数字经济占比逐年上升。近年来,机器人流程自动化(Robotic Process Automation,RPA)成…...
DOM编程-获取下拉列表选中项的value
<!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title>获取下拉列表选中项的value</title> </head> <body> <script type"text/javascript"> …...
认证服务-----技术点及亮点
大技术Nacos做注册中心把新建的微服务注册到Nacos上去两个步骤 在配置文件中配置应用名称、nacos的发现注册ip地址,端口号在启动类上用EnableDiscoveryClient注解开启注册功能使用Redis存验证码信息加入依赖配置地址和端口号即可直接注入StringRedisTemplate模板类用…...
6个常见的 PHP 安全性攻击
了解常见的PHP应用程序安全威胁,可以确保你的PHP应用程序不受攻击。因此,本文将列出 6个常见的 PHP 安全性攻击,欢迎大家来阅读和学习。 1、SQL注入 SQL注入是一种恶意攻击,用户利用在表单字段输入SQL语句的方式来影响正常的SQL执…...
三大基础排序算法——冒泡排序、选择排序、插入排序
目录前言一、排序简介二、冒泡排序三、选择排序四、插入排序五、对比References前言 在此之前,我们已经介绍了十大排序算法中的:归并排序、快速排序、堆排序(还不知道的小伙伴们可以参考我的 「数据结构与算法」 专栏)࿰…...
负载均衡上传webshell+apache换行解析漏洞
目录一、负载均衡反向代理下的webshell上传1、nginx负载均衡2、负载均衡下webshell上传的四大难点难点一:需要在每一台节点的相同位置上传相同内容的webshell难点二:无法预测下一次请求是哪一台机器去执行难点三:当我们需要上传一些工具时&am…...
【ESP 保姆级教程】玩转emqx数据集成篇③ ——消息重发布
忘记过去,超越自己 ❤️ 博客主页 单片机菜鸟哥,一个野生非专业硬件IOT爱好者 ❤️❤️ 本篇创建记录 2023-02-10 ❤️❤️ 本篇更新记录 2023-02-10 ❤️🎉 欢迎关注 🔎点赞 👍收藏 ⭐️留言📝🙏 此博客均由博主单独编写,不存在任何商业团队运营,如发现错误,请…...
支持分布式部署的主流方式 - Session 持久化到 Redis
1.为什么要将 Session 存储在 Redis 中如果我们不将 Session 存储在 MySQL 或者 Redis 中, 那么做出来的项目就只能支持单机部署, 不支持分布式部署. 因为之前我们只是将 Session 存储在当前电脑的内存里面. 当张三去登录的时候, 将 Session 信息存储在 A 服务器, 这个时候负载…...
计算机网络|第二章 物理层|湖科大课程|从零开始的计网学习——物理层(计网入门就看这篇!)
图片来源于胡科大计算机网络课程,https://www.bilibili.com/video/BV1c4411d7jb?p20&vd_sourcedeb12d86dce7e419744a73045bc66364。文章非盈利商业用途,供博主与大家学习参考,如有侵权,请联系我删除!2.1物理层的基…...
【微服务】RabbitMQSpringAMQP消息队列
🚩本文已收录至专栏:微服务探索之旅 👍希望您能有所收获 一.初识MQ (1) 引入 微服务间通讯有同步和异步两种方式: 同步通讯:就像打电话,可以立即得到响应,但是你却不能跟多个人同时通话。 异…...
jenkins +docker+python接口自动化之docker下安装jenkins(一)
jenkins dockerpython接口自动化之docker下安装jenkins(一) 目录:导读 1、下载jenkins 2、启动jenkins 3、访问jenkins 4.浏览器直接访问http://ip/:8080 5.然后粘贴到输入框中,之后新手入门中先安装默认的插件即可,完成后出…...
SpringBoot——Banner介绍
一、什么是BannerBanner即横幅标语,我们在启动SpringBoot项目时会将Banner信息打印至控制台。我们可以输出一些图形、SpringBoot版本信息等内容。默认情况下是通过实现类SpringBootBanner输出的Banner内容,默认的输出内容如下。二、自定义Banner如果不想…...
【STL】综述
STL,一文即可知 文章目录一、STL基本知识概述容器二、序列式容器详述数组容器array向量容器vector双端队列容器deque链式容器list正向链容器forward_list二、关联式容器详述红黑树RB-Tree哈希表参考博客😊点此到文末惊喜↩︎ 一、STL基本知识 概述 STL…...
C++中编译的静态库与动态库
1.什么是库库是写好的现有的,成熟的,可以复用的代码。现实中每个程序都要依赖很多基础的底层库,不可能每个人的代码都从零开始,因此库的存在意义非同寻常。本质上来说库是一种可执行代码的二进制形式,可以被操作系统载…...
JS对象到原始值的转换
JS对象到原始值转换的复杂性 主要由于某些对象类型存在不止一种原始值的表示 对象到原始值转换的三种基本算法 在解释三种算法前需要了解toString valueOf这两个方法 toString 返回对象的字符串表示Array类的toString方法会将每个元素转换为字符串,再使用逗号作为…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...
PHP 8.5 即将发布:管道操作符、强力调试
前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...
嵌入式面试常问问题
以下内容面向嵌入式/系统方向的初学者与面试备考者,全面梳理了以下几大板块,并在每个板块末尾列出常见的面试问答思路,帮助你既能夯实基础,又能应对面试挑战。 一、TCP/IP 协议 1.1 TCP/IP 五层模型概述 链路层(Link Layer) 包括网卡驱动、以太网、Wi‑Fi、PPP 等。负责…...
用鸿蒙HarmonyOS5实现国际象棋小游戏的过程
下面是一个基于鸿蒙OS (HarmonyOS) 的国际象棋小游戏的完整实现代码,使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├── …...
统计按位或能得到最大值的子集数目
我们先来看题目描述: 给你一个整数数组 nums ,请你找出 nums 子集 按位或 可能得到的 最大值 ,并返回按位或能得到最大值的 不同非空子集的数目 。 如果数组 a 可以由数组 b 删除一些元素(或不删除)得到,…...
智能照明系统:具备认知能力的“光神经网络”
智能照明系统是物联网技术与传统照明深度融合的产物,其本质是通过感知环境、解析需求、自主决策的闭环控制,重构光与人、空间、环境的关系。这一系统由智能光源、多维传感器、边缘计算单元及云端管理平台构成,形成具备认知能力的“光神经网络…...
