当前位置: 首页 > news >正文

并发编程面试题1

并发编程面试题1

一、原子性高频问题:

1.1 Java中如何实现线程安全?

多线程操作共享数据出现的问题。

锁:

  • 悲观锁:synchronized,lock
  • 乐观锁:CAS

可以根据业务情况,选择ThreadLocal,让每个线程玩自己的数据。

1.2 CAS底层实现

最终回答:先从比较和交换的角度去聊清楚,在Java端聊到native方法,然后再聊到C++中的cmpxchg的指令,再聊到lock指令保证cmpxchg原子性

Java的角度,CAS在Java层面最多你就能看到native方法。

你会知道比较和交换:

  • 先比较一下值是否与预期值一致,如果一致,交换,返回true
  • 先比较一下值是否与预期值一致,如果不一致,不交换,返回false

可以去看Unsafe类中提供的CAS操作

四个参数:哪个对象,哪个属性的内存偏移量,oldValue,newValue

image.png

native是直接调用本地依赖库C++中的方法。

https://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/file/69087d08d473/src/share/vm/prims/unsafe.cpp

image.png

https://hg.openjdk.java.net/jdk8u/jdk8u/hotspot/file/69087d08d473/src/os_cpu/linux_x86/vm/atomic_linux_x86.inline.hpp

在CAS底层,如果是多核的操作系统,需要追加一个lock指令

单核不需要加,因为cmpxchg是一行指令,不能再被拆分了

image.png

看到cmpxchg ,是汇编的指令,CPU硬件底层就支持 比较和交换 (cmpxchg),cmpxchg并不保证原子性的。(cmpxchg的操作是不能再拆分的指令)

所以才会出现判断CPU是否是多核,如果是多核就追加lock指令。

lock指令你可以理解为是CPU层面的锁,一般锁的粒度就是 缓存行 级别的锁,当然也有 总线锁 ,但是成本太高,CPU会根据情况选择。

1.3 CAS的常见问题

ABA: ABA不一定是问题!因为一些只存在 ++,–的这种操作,即便出现ABA问题,也不影响结果!

线程A:期望将value从A1 - B2

线程B:期望将value从B2 - A3

线程C:期望将value从A1 - C4

按照原子性来说,无法保证线程安全。

解决方案很简单,Java端已经提供了。

image.png

说人话就是,在修改value的同时,指定好版本号。

JUC下提供的AtomicStampedReference就可以实现。

自旋次数过多:

自旋次数过多,会额外的占用大量的CPU资源!浪费资源。

回答方式:可以从synchronized或者LongAdder层面去聊

  • synchronized方向:从CAS几次失败后,就将线程挂起(WAITING),避免占用CPU过多的资源!
  • LongAdder方向:这里是基于类似 分段锁 的形式去解决(要看业务,有限制的),传统的AtmoicLong是针对内存中唯一的一个值去++,LongAdder在内存中搞了好多个值,多个线程去加不同的值,当你需要结果时,我将所有值累加,返回给你。

只针对一个属性保证原子性: 处理方案,学了AQS就懂了。ReentrantLock基于AQS实现,AQS基于CAS实现核心功能。

1.4 四种引用类型 + ThreadLocal的问题?

ThreadLocal的问题:Java基础面试题2 – 第16题。

四种引用类型:

  • 强引用:User xx = new User(); xx就是强引用,只要引用还在,GC就不会回收!

  • 软引用:用一个SofeReference引用的对象,就是软引用,如果内存空间不足,才会回收只有软引用指向对象。 一般用于做缓存

    SoftwareReference xx = new SoftwareReference (new User);User user = xx.get();
    
  • 弱引用:WeakReference引用的对象,一般就是弱引用,只要执行GC,就会回收只有弱引用指向的对象。可以解决内存泄漏的问题 ,看ThreadLocal即可

    ThreadLocal的问题:Java基础面试题2 – 第16题。

  • 虚引用:PhantomReference引用的对象,就是虚引用,拿不到虚引用指向的对象,一般监听GC回收阶段,或者是回收堆外内存时使用。

二、可见性高频问题:

2.1 Java的内存模型

回答方式。先全局描述。 在处理指令时,CPU会拉取数据,优先级是从L1到L2到L3,如果都没有,需要去主内存中拉取,JMM就是在CPU和主内存之间,来协调,保证可见、有序性等操作。

一定要聊JMM,别上来就聊JVM的内存结构,不是一个东西!!!!(Java Memory Model)

image.png

CPU核心,就是CPU核心(寄存器)

缓存是CPU的缓存,CPU的缓存分为L1(线程独享),L2(内核独享),L3(多核共享)

JMM就是Java内存模型的核心,可见性,有序性都基于这实现。

主内存JVM,就是你堆内存。

2.2 保证可见性的方式

啥是可见性: 可见性是指线程间的,对变量的变化是否可见

Java层面中,保证可见性的方式有很多:

  • volatile,用volatile基本数据类型,可以保证每次CPU去操作数据时,都直接去主内存进行读写。
  • synchronized,synchronized的内存语义可以保证在获取锁之后,可以保证前面操作的数据是可见的。
  • lock(CAS-volatile),也可以保证CAS或者操作volatile的变量之后,可以保证前面操作的数据是可见的。
  • final,是常量没法动~~

2.3 volatile修饰引用数据类型

先说结果, 首先volatile修饰引用数据类型,只能保证引用数据类型的地址是可见的,不保证内部属性可见。

But,这个结论只能在hotspot中实现,如果换一个版本的虚拟机,可能效果就不一样了。volatile修饰引用数据类型,JVM压根就没规范过这种操作,不同的虚拟机厂商,可以自己实现。
这个问题,只出现在面试中,干活你要这么干……………………干丫的~

2.4 有了MESI协议,为啥还有volatile?

MESI是CPU缓存一致性的协议,大多数的CPU厂商都根据MESI去实现了缓存一致性的效果。

CPU已经有MESI协议了,volatile是不是有点多余啊!?

首先,这哥俩不冲突,一个是从CPU硬件层面上的一致性,一个是Java中JMM层面的一致性。

MESI协议,他有一套固定的机制,无论你是否声明了volatile,他都会基于这个机制来保证缓存的一致性(可见性)。同时,也要清楚,如果没有MESI协议,volatile也会存在一些问题,不过也有其他的处理方案(总线锁,时间成本太高了,如果锁了总线,就一个CPU核心在干活)。

MESI是协议,是规划,是interface,他需要CPU厂商实现。

既然CPU有MESI了,为啥还要volatile,那自然是MESI协议有问题。MESI保证了多核CPU的独占cache之间的可见性,但是CPU不是说必须直接将寄存器中的数据写入到L1,因为在大多是×86架构的CPU中,寄存器和L1之间有一个store buffer,寄存器值可能落到了store buffer,没落到L1中,就会导致缓存不一致。而且除了×86架构的CPU,在arm和power的CPU中,还有load buffer,invalid queue都会或多或少影响缓存一致性!

回答的方式:MESI协议和volatile不冲突,因为MESI是CPU层面的,而CPU厂商很多实现不一样,而且CPU的架构中的一些细节也会有影响,比如Store Buffer会影响寄存器写入L1缓存,导致缓存不一致。volatile的底层生成的是汇编的lock指令,这个指令会要求强行写入主内存,并且可以忽略Store Buffer这种缓存从而达到可见性的目的,而且会利用MESI协议,让其他缓存行失效。

2.5 volatile的可见性底层实现

volatile的底层生成的是汇编的lock指令,这个指令会要求强行写入主内存,并且可以忽略Store Buffer这种缓存从而达到可见性的目的,而且会利用MESI协议,让其他缓存行失效。

三、有序性高频问题:

3.1 什么是有序性问题

单例模式中的懒汉机制中,就存在一个这样的问题。

懒汉为了保证线程安全,一般会采用DCL的方式。

但是单单用DCL,依然会有几率出现问题。

线程可能会拿到初始化一半的对象去操作,极有可能出现NullPointException。

(初始化对象三部,开辟空间,初始化内部属性,指针指向引用)

在Java编译.java为.class时,会基于JIT做优化,将指令的顺序做调整,从而提升执行效率。

在CPU层面,也会对一些执行进行重新排序,从而提升执行效率。

这种指令的调整,在一些特殊的操作上,会导致出现问题。

3.2 volatile的有序性底层实现

被volatile修饰的属性,在编译时,会在前后追加 内存屏障

SS:屏障前的读写操作,必须全部完成,再执行后续操作

SL:屏障前的写操作,必须全部完成,再执行后续读操作

LL:屏障前的读操作,必须全部完成,再执行后续读操作

LS:屏障前的读操作,必须全部完成,再执行后续写操作

image.png

这个内存屏障是JDK规定的,目的是保证volatile修饰的属性不会出现指令重排的问题。

volatile在JMM层面,保证JIT不重排可以理解,但是,CPU怎么实现的。

查看这个文档:https://gee.cs.oswego.edu/dl/jmm/cookbook.html

image.png

不同的CPU对内存屏障都有一定的支持,比如×86架构,内部自己已经实现了LS,LL,SS,只针对SL做了支持。

去openJDK再次查看,mfence是如何支持的。其实在底层还是mfence内部的lock指定,来解决指令重排问题。

image.png

四、synchronized高频问题:

4.1 synchronized锁升级的过程?

锁就是对象,随便哪一个都可以,Java中所有对象都是锁。

无锁(匿名偏向)、偏向锁、轻量级锁、重量级锁

无锁(匿名偏向): 一般情况下,new出来的一个对象,是无锁状态。因为偏向锁有延迟,在启动JVM的4s中,不存在偏向锁,但是如果关闭了偏向锁延迟的设置,new出来的对象,就是匿名偏向。

偏向锁: 当某一个线程来获取这个锁资源时,此时,就会变为偏向锁,偏向锁存储线程的ID

当偏向锁升级时,会触发偏向锁撤销,偏向锁撤销需要等到一个安全点,比如GC的时候,偏向锁撤销的成本太高,所以默认开始时,会做偏向锁延迟。

安全点:

  • GC
  • 方法返回之前
  • 调用某个方法之后
  • 甩异常的位置
  • 循环的末尾

轻量级锁: 当在出现了多个线程的竞争,就要升级为轻量级锁(有可能直接从无锁变为轻量级锁,也有可能从偏向锁升级为轻量级锁),轻量级锁的效果就是基于CAS尝试获取锁资源,这里会用到自适应自旋锁,根据上次CAS成功与否,决定这次自旋多少次。

重量级锁: 如果到了重量级锁,那就没啥说的了,如果有线程持有锁,其他竞争的,就挂起。

4.2 synchronized锁粗化&锁消除?

锁粗化(锁膨胀):(JIT优化)

while(){sync(){// 多次的获取和释放,成本太高,优化为下面这种}
}
//----
sync(){while(){//  优化成这样}
}

锁消除:在一个sync中,没有任何共享资源,也不存在锁竞争的情况,JIT编译时,就直接将锁的指令优化掉。

4.3 synchronized实现互斥性的原理?

偏向锁:查看对象头中的MarkWord里的线程ID,是否是当前线程,如果不是,就CAS尝试改,如果是,就拿到了锁资源。

轻量级锁:查看对象头中的MarkWord里的Lock Record指针指向的是否是当前线程的虚拟机栈,如果是,拿锁执行业务,如果不是CAS,尝试修改,修改他几次,不成,再升级到重量级锁。

重量级锁:查看对象头中的MarkWord里的指向的ObjectMonitor,查看owner是否是当前线程,如果不是,扔到ObjectMonitor里的EntryList中,排队,并挂起线程,等待被唤醒。

image.png

4.4 wait为什么是Object下的方法?

执行wait方法需要持有sync锁。

sync锁可以是任意对象。

同时执行wait方法是在持有sync锁的时候,释放锁资源。

其次wait方法需要去操作ObjectMonitor,而操作ObjectMonitor就必须要在持有锁资源的前提的才能操作,将当前线程扔到WaitSet等待池中。

同理,notify方法需要将WaitSet等待池中线程扔到EntryList,如果不拥有ObjectMonitor,怎么操作!

类锁就是基于类.class作为 类锁

对象锁,就是new 一个对象作为 对象锁

设计模式(单例,工厂,代理,消费者生产者,策略,责任链,观察者,模板,装饰者),多线程,JVM,MySQL,Spring,SpringBoot,Redis,MQ

相关文章:

并发编程面试题1

并发编程面试题1 一、原子性高频问题: 1.1 Java中如何实现线程安全? 多线程操作共享数据出现的问题。 锁: 悲观锁:synchronized,lock乐观锁:CAS 可以根据业务情况,选择ThreadLocal,让每个…...

【对于一维信号的匹配】对一个一维(时间)信号y使用自定义基B执行匹配追踪(MP)研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

【Oracle 数据库 SQL 语句 】积累1

Oracle 数据库 SQL 语句 1、分组之后再合计2、显示不为空的值 1、分组之后再合计 关键字: grouping sets ((分组字段1,分组字段2),()) select sylbdm ,count(sylbmc) a…...

Django中级指南:理解并实现Django的模型和数据库迁移

Django 是一个极其强大的 Python Web 框架,它提供了许多工具和特性,能够帮助我们更快速、更便捷地构建 Web 应用。在本文中,我们将会关注 Django 中的模型(Models)和数据库迁移(Database Migrations&#x…...

Chatgpt API调用报错:openai.error.RateLimitError

Chatgpt API 调用报错: openai.error.RateLimitError: You exceeded your current quota, please check your plan and billing details. 调用OpenAI API接口 import openai import osopenai.api_key os.getenv("OPENAI_API_KEY")result openai.Chat…...

一键获取数百张免费商用人脸!AI人脸生成器来袭

随着科技的发展,人工智能正在渗透到生活的各个角落,设计行业也不例外。在网页、APP、PPT 等界面设计中,设计师经常需要插入真实的人脸素材,以增强作品的真实感和场景化。但是获取素材既不容易,质量和价格也难免成为设计…...

跳跃游戏 II——力扣45

文章目录 题目描述解法一 贪心题目描述 解法一 贪心 int jump(vector<int>& nums){in...

Stable Diffusion - 常用的负向提示 Embeddings 解析与 坐姿 (Sitting) 提示词

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/132145248 负向 Embeddings 是用于提高 StableDiffusion 生成图像质量的技术&#xff0c;可以避免生成一些不符合预期的图像特征&#xff0c;比如…...

工厂方法模式(一):C#实现指南

工厂方法模式是一种创建型设计模式&#xff0c;用于处理对象的创建问题。通过使用工厂方法模式&#xff0c;我们可以将对象的创建过程与使用过程分离&#xff0c;从而增加代码的灵活性和可维护性。 工厂方法模式的定义 工厂方法模式定义了一个创建对象的接口&#xff0c;但由子…...

Spring接口InitializingBean的作用和使用介绍

在Spring框架中&#xff0c;InitializingBean接口是一个回调接口&#xff0c;用于在Spring容器实例化Bean并设置Bean的属性之后&#xff0c;执行一些自定义的初始化逻辑。实现InitializingBean接口的Bean可以在初始化阶段进行一些必要的操作&#xff0c;比如数据的初始化、资源…...

Excel---成绩相同者,名次并列排列,三步搞定

需求&#xff1a;一张成绩表&#xff0c;共341行(340条数据&#xff0c;第一条为标题)&#xff0c;根据成绩进行排序&#xff0c;成绩相同进行名次并列 一、选择生成结果的位置&#xff0c;我这里点击了一下E2单元格 二、公式—>插入–>rank函数 数值&#xff1a;D2 表示…...

Elasticsearch6.x和7.x的区别

Elasticsearch6.x和7.x的区别 1、查找方面的区别 在增删改方面&#xff0c;6.x和7.x是一样的&#xff0c;在查找方面&#xff08;分为普通查找和有高亮的查找&#xff09;&#xff0c;6.x和7.x有区别。 在7.x的es中&#xff1a; org.springframework.data.elasticsearch.cor…...

基于STM32设计的口罩识别和无线测温系统

一、设计需求 基于STM32设计的口罩识别和无线测温系统 1.1 项目背景 随着深度学习和计算机视觉的快读发展,与此有关的技术设备已经被大幅度的使用,并且不仅仅在这两个方面,更在许许多多的领域都有使用。众所周知,图像理解之中的最重要的一个步骤即为目标检测,和为目标检测…...

第五十天

●软件测试的目的 软件测试的目的是寻找错误&#xff0c;并且尽可能找出更多的错误。 测试是程序的执行过程&#xff0c;目的在于发现错误 一个好的测试用例在于能够发现至今为止未发现的错误 一个成功的测试是发现了至今未发现的错误的测试 ●软件测试工作流程&#xff1…...

vue-pc端elementui-统一修改问题-Dialog 对话框点击空白关闭问题-element-所有组件层级问题

前言 实际开发我们经常发现dialog弹出框默认点击遮罩层空白地方就会关闭-有属性可以关闭 但是经常会图方便-或者已经写完了&#xff0c;不想一个个写&#xff0c;可以在main.js进行统一关闭 当我们在页面进行复杂设计和层级关闭改变&#xff0c;会发现右上角的退出登录弹出款…...

VS code 用户设置

ctrlshiftP打开用户设设置 vscode user setting.json 中的配置 {// vscode默认启用了根据文件类型自动设置tabsize的选项"editor.detectIndentation": false,//黄色波浪线"eslint.enable": false,// 重新设定tabsize"editor.tabSize": 2,&quo…...

【Spring security 解决跨域】

security 跨域 概述方案方案一方案二方案三方案四 主页传送门&#xff1a;&#x1f4c0; 传送 概述 Spring Security是一个功能强大且高度可定制的&#xff0c;主要负责为Java程序提供声明式的身份验证和访问控制的安全框架。其前身是Acegi Security,后来被收纳为Spring的一个…...

【C语言】经典题目(四)

HI&#xff0c;大家好~&#x1f61d;&#x1f61d;这是一篇C语言经典题目的博客。 更多C语言经典题目及刷题篇&#xff0c;可以参考&#xff1a; &#x1f338; 【C语言】经典题目(一) &#x1f338; 【C语言】经典题目(二) &#x1f338; 【C语言】经典题目(三) &#x1f338;…...

Prometheus-监控 Postgresql

一、部署 1 二进制方式部署 github 地址:https://github.com/prometheus-community/postgres_exporter 1.1 下载 可以从官方发布版本中找到多个平台的二进制安装包。 打开连接后,点击 Assets,即可看到下载列表。 本文档使用如下版本作为示例 curl -o postgres_exporte…...

Android java.lang.UnsatisfiedLinkError: No implementation found

例如&#xff0c;该项目的如下报错&#xff1a; java.lang.UnsatisfiedLinkError: No implementation found for void org.webrtc.PeerConnectionFactory.nativeInitializeAndroidGlobals() (tried Java_org_webrtc_PeerConnectionFactory_nativeInitializeAndroidGlobals and…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库&#xff08;uthash库&#xff09;提供对哈希表的操作&#xff0c;文章如下&#xff1a; C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用

在工业制造领域&#xff0c;无损检测&#xff08;NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统&#xff0c;以非接触式光学麦克风技术为核心&#xff0c;打破传统检测瓶颈&#xff0c;为半导体、航空航天、汽车制造等行业提供了高灵敏…...

Python网页自动化Selenium中文文档

1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API&#xff0c;让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API&#xff0c;你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...

【UE5 C++】通过文件对话框获取选择文件的路径

目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 &#xff0c;这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器&#xff0c;右键点击 .uproject 文件&#xff0c;选择 "Generate Visual Studio project files"&#xff0c;重…...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)

第一篇&#xff1a;Liunx环境下搭建PaddlePaddle 3.0基础环境&#xff08;Liunx Centos8.5安装Python3.10pip3.10&#xff09; 一&#xff1a;前言二&#xff1a;安装编译依赖二&#xff1a;安装Python3.10三&#xff1a;安装PIP3.10四&#xff1a;安装Paddlepaddle基础框架4.1…...

​​企业大模型服务合规指南:深度解析备案与登记制度​​

伴随AI技术的爆炸式发展&#xff0c;尤其是大模型&#xff08;LLM&#xff09;在各行各业的深度应用和整合&#xff0c;企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者&#xff0c;还是积极拥抱AI转型的传统企业&#xff0c;在面向公众…...