竞赛项目 深度学习图像风格迁移 - opencv python
文章目录
- 0 前言
- 1 VGG网络
- 2 风格迁移
- 3 内容损失
- 4 风格损失
- 5 主代码实现
- 6 迁移模型实现
- 7 效果展示
- 8 最后
0 前言
🔥 优质竞赛项目系列,今天要分享的是
🚩 深度学习图像风格迁移 - opencv python
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🥇学长这里给一个题目综合评分(每项满分5分)
- 难度系数:3分
- 工作量:3分
- 创新点:4分
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
图片风格迁移指的是将一个图片的风格转换到另一个图片中,如图所示:

原图片经过一系列的特征变换,具有了新的纹理特征,这就叫做风格迁移。
1 VGG网络
在实现风格迁移之前,需要先简单了解一下VGG网络(由于VGG网络不断使用卷积提取特征的网络结构和准确的图像识别效率,在这里我们使用VGG网络来进行图像的风格迁移)。

如上图所示,从A-
E的每一列都表示了VGG网络的结构原理,其分别为:VGG-11,VGG-13,VGG-16,VGG-19,如下图,一副图片经过VGG-19网络结构可以最后得到一个分类结构。

2 风格迁移
对一副图像进行风格迁移,需要清楚的有两点。
- 生成的图像需要具有原图片的内容特征
- 生成的图像需要具有风格图片的纹理特征
根据这两点,可以确定,要想实现风格迁移,需要有两个loss值:
一个是生成图片的内容特征与原图的内容特征的loss,另一个是生成图片的纹理特征与风格图片的纹理特征的loss。
而对一张图片进行不同的特征(内容特征和纹理特征)提取,只需要使用不同的卷积结构进行训练即可以得到。这时我们需要用到两个神经网络。
再回到VGG网络上,VGG网络不断使用卷积层来提取特征,利用特征将物品进行分类,所以该网络中提取内容和纹理特征的参数都可以进行迁移使用。故需要将生成的图片经过VGG网络的特征提取,再分别针对内容和纹理进行特征的loss计算。

如图,假设初始化图像x(Input image)是一张随机图片,我们经过fw(image Transform Net)网络进行生成,生成图片y。
此时y需要和风格图片ys进行特征的计算得到一个loss_style,与内容图片yc进行特征的计算得到一个loss_content,假设loss=loss_style+loss_content,便可以对fw的网络参数进行训练。
现在就可以看网上很常见的一张图片了:

相较于我画的第一张图,这即对VGG内的loss求值过程进行了细化。
细化的结果可以分为两个方面:
- (1)内容损失
- (2)风格损失
3 内容损失
由于上图中使用的模型是VGG-16,那么即相当于在VGG-16的relu3-3处,对两张图片求得的特征进行计算求损失,计算的函数如下:

简言之,假设yc求得的特征矩阵是φ(y),生成图片求得的特征矩阵为φ(y^),且c=φ.channel,w=φ.weight,h=φ.height,则有:

代码实现:
def content_loss(content_img, rand_img):content_layers = [('relu3_3', 1.0)]content_loss = 0.0# 逐个取出衡量内容损失的vgg层名称及对应权重for layer_name, weight in content_layers:# 计算特征矩阵p = get_vgg(content_img, layer_name)x = get_vgg(rand_img, layer_name)# 长x宽xchannelM = p.shape[1] * p.shape[2] * p.shape[3]# 根据公式计算损失,并进行累加content_loss += (1.0 / M) * tf.reduce_sum(tf.pow(p - x, 2)) * weight# 将损失对层数取平均content_loss /= len(content_layers)return content_loss
4 风格损失
风格损失由多个特征一同计算,首先需要计算Gram Matrix

Gram Matrix实际上可看做是feature之间的偏心协方差矩阵(即没有减去均值的协方差矩阵),在feature
map中,每一个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字就代表一个特征的强度,而Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的等等,同时,Gram的对角线元素,还体现了每个特征在图像中出现的量,因此,Gram有助于把握整个图像的大体风格。有了表示风格的Gram
Matrix,要度量两个图像风格的差异,只需比较他们Gram Matrix的差异即可。 故在计算损失的时候函数如下:

在实际使用时,该loss的层级一般选择由低到高的多个层,比如VGG16中的第2、4、7、10个卷积层,然后将每一层的style loss相加。

第三个部分不是必须的,被称为Total Variation
Loss。实际上是一个平滑项(一个正则化项),目的是使生成的图像在局部上尽可能平滑,而它的定义和马尔科夫随机场(MRF)中使用的平滑项非常相似。
其中yn+1是yn的相邻像素。
代码实现以上函数:
# 求gamm矩阵
def gram(x, size, deep):x = tf.reshape(x, (size, deep))g = tf.matmul(tf.transpose(x), x)return gdef style_loss(style_img, rand_img):style_layers = [('relu1_2', 0.25), ('relu2_2', 0.25), ('relu3_3', 0.25), ('reluv4_3', 0.25)]style_loss = 0.0# 逐个取出衡量风格损失的vgg层名称及对应权重for layer_name, weight in style_layers:# 计算特征矩阵a = get_vgg(style_img, layer_name)x = get_vgg(rand_img, layer_name)# 长x宽M = a.shape[1] * a.shape[2]N = a.shape[3]# 计算gram矩阵A = gram(a, M, N)G = gram(x, M, N)# 根据公式计算损失,并进行累加style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight# 将损失对层数取平均style_loss /= len(style_layers)return style_loss
5 主代码实现
代码实现主要分为4步:
-
1、随机生成图片
-
2、读取内容和风格图片
-
3、计算总的loss
-
4、训练修改生成图片的参数,使得loss最小
* def main():# 生成图片rand_img = tf.Variable(random_img(WIGHT, HEIGHT), dtype=tf.float32)with tf.Session() as sess:content_img = cv2.imread('content.jpg')style_img = cv2.imread('style.jpg')# 计算loss值cost = ALPHA * content_loss(content_img, rand_img) + BETA * style_loss(style_img, rand_img)optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)sess.run(tf.global_variables_initializer())for step in range(TRAIN_STEPS):# 训练sess.run([optimizer, rand_img])if step % 50 == 0:img = sess.run(rand_img)img = np.clip(img, 0, 255).astype(np.uint8)name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"cv2.imwrite(name, img)6 迁移模型实现
由于在进行loss值求解时,需要在多个网络层求得特征值,并根据特征值进行带权求和,所以需要根据已有的VGG网络,取其参数,重新建立VGG网络。
注意:在这里使用到的是VGG-19网络:
在重建的之前,首先应该下载Google已经训练好的VGG-19网络,以便提取出已经训练好的参数,在重建的VGG-19网络中重新利用。

下载得到.mat文件以后,便可以进行网络重建了。已知VGG-19网络的网络结构如上述图1中的E网络,则可以根据E网络的结构对网络重建,VGG-19网络:

进行重建即根据VGG-19模型的结构重新创建一个结构相同的神经网络,提取出已经训练好的参数作为新的网络的参数,设置为不可改变的常量即可。
def vgg19():layers=('conv1_1','relu1_1','conv1_2','relu1_2','pool1','conv2_1','relu2_1','conv2_2','relu2_2','pool2','conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3','conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4','conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5')vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')weights = vgg['layers'][0]network={}net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)network['input'] = netfor i,name in enumerate(layers):layer_type=name[:4]if layer_type=='conv':kernels = weights[i][0][0][0][0][0]bias = weights[i][0][0][0][0][1]conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)net=tf.nn.relu(conv + bias)elif layer_type=='pool':net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')network[name]=netreturn network
由于计算风格特征和内容特征时数据都不会改变,所以为了节省训练时间,在训练之前先计算出特征结果(该函数封装在以下代码get_neck()函数中)。
总的代码如下:
import tensorflow as tfimport numpy as npimport scipy.ioimport cv2import scipy.miscHEIGHT = 300WIGHT = 450LEARNING_RATE = 1.0NOISE = 0.5ALPHA = 1BETA = 500TRAIN_STEPS = 200OUTPUT_IMAGE = "D://python//img"STYLE_LAUERS = [('conv1_1', 0.2), ('conv2_1', 0.2), ('conv3_1', 0.2), ('conv4_1', 0.2), ('conv5_1', 0.2)]CONTENT_LAYERS = [('conv4_2', 0.5), ('conv5_2',0.5)]def vgg19():layers=('conv1_1','relu1_1','conv1_2','relu1_2','pool1','conv2_1','relu2_1','conv2_2','relu2_2','pool2','conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3','conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4','conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5')vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')weights = vgg['layers'][0]network={}net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)network['input'] = netfor i,name in enumerate(layers):layer_type=name[:4]if layer_type=='conv':kernels = weights[i][0][0][0][0][0]bias = weights[i][0][0][0][0][1]conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)net=tf.nn.relu(conv + bias)elif layer_type=='pool':net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')network[name]=netreturn network# 求gamm矩阵def gram(x, size, deep):x = tf.reshape(x, (size, deep))g = tf.matmul(tf.transpose(x), x)return gdef style_loss(sess, style_neck, model):style_loss = 0.0for layer_name, weight in STYLE_LAUERS:# 计算特征矩阵a = style_neck[layer_name]x = model[layer_name]# 长x宽M = a.shape[1] * a.shape[2]N = a.shape[3]# 计算gram矩阵A = gram(a, M, N)G = gram(x, M, N)# 根据公式计算损失,并进行累加style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight# 将损失对层数取平均style_loss /= len(STYLE_LAUERS)return style_lossdef content_loss(sess, content_neck, model):content_loss = 0.0# 逐个取出衡量内容损失的vgg层名称及对应权重for layer_name, weight in CONTENT_LAYERS:# 计算特征矩阵p = content_neck[layer_name]x = model[layer_name]# 长x宽xchannelM = p.shape[1] * p.shape[2]N = p.shape[3]lss = 1.0 / (M * N)content_loss += lss * tf.reduce_sum(tf.pow(p - x, 2)) * weight# 根据公式计算损失,并进行累加# 将损失对层数取平均content_loss /= len(CONTENT_LAYERS)return content_lossdef random_img(height, weight, content_img):noise_image = np.random.uniform(-20, 20, [1, height, weight, 3])random_img = noise_image * NOISE + content_img * (1 - NOISE)return random_imgdef get_neck(sess, model, content_img, style_img):sess.run(tf.assign(model['input'], content_img))content_neck = {}for layer_name, weight in CONTENT_LAYERS:# 计算特征矩阵p = sess.run(model[layer_name])content_neck[layer_name] = psess.run(tf.assign(model['input'], style_img))style_content = {}for layer_name, weight in STYLE_LAUERS:# 计算特征矩阵a = sess.run(model[layer_name])style_content[layer_name] = areturn content_neck, style_contentdef main():model = vgg19()content_img = cv2.imread('D://a//content1.jpg')content_img = cv2.resize(content_img, (450, 300))content_img = np.reshape(content_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]style_img = cv2.imread('D://a//style1.jpg')style_img = cv2.resize(style_img, (450, 300))style_img = np.reshape(style_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]# 生成图片rand_img = random_img(HEIGHT, WIGHT, content_img)with tf.Session() as sess:# 计算loss值content_neck, style_neck = get_neck(sess, model, content_img, style_img)cost = ALPHA * content_loss(sess, content_neck, model) + BETA * style_loss(sess, style_neck, model)optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)sess.run(tf.global_variables_initializer())sess.run(tf.assign(model['input'], rand_img))for step in range(TRAIN_STEPS):print(step)# 训练sess.run(optimizer)if step % 10 == 0:img = sess.run(model['input'])img += [128, 128, 128]img = np.clip(img, 0, 255).astype(np.uint8)name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"img = img[0]cv2.imwrite(name, img)img = sess.run(model['input'])img += [128, 128, 128]img = np.clip(img, 0, 255).astype(np.uint8)cv2.imwrite("D://end.jpg", img[0])main()
7 效果展示

8 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:
竞赛项目 深度学习图像风格迁移 - opencv python
文章目录 0 前言1 VGG网络2 风格迁移3 内容损失4 风格损失5 主代码实现6 迁移模型实现7 效果展示8 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习图像风格迁移 - opencv python 该项目较为新颖,适合作为竞赛课题…...
Windows dos文件夹与文件怎么创建与删除
在Windows操作系统中,你可以使用命令行工具(命令提示符或PowerShell)来创建和删除文件夹和文件。以下是创建和删除文件夹和文件的基本方法: 创建文件夹: 使用mkdir命令来创建文件夹(目录)。 m…...
JVM总结2
1.基本概念 java代码执行 代码编译class:javac 源文件通过编译器产生字节码文件,字节码文件通过jvm的解释器编译成机器上的机器码 装载class:ClassLoader执行class: 解释执行编译执行 client compilerserver compiler 内存管理…...
servlet三大类HttpSevlet,HttpServletRequest,HttpServletResponse介绍
一、HttpServlet HttpServlet类是一个被继承的方法,可以看做一个专门用来响应http请求的类,这个类的所有方法都是为响应http请求服务的,要对一个某个路径谁知http响应时,需要写一个类来继承HttpServlet类,并重写里面的…...
【雕爷学编程】Arduino动手做(12)---霍尔模块之霍尔磁感应声光报警器(磁控开关,接220V)
37款传感器与模块的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的&#x…...
认识 SQL
文章目录 1.简介2.组成3.工作原理4.五种子语言5.注释方式6.字符串表示方式参考文献 1.简介 SQL(Structured Query Language,结构化查询语言)是一种用于管理和操作关系型数据库的标准化查询语言。它是一种领域特定语言(DSL&#x…...
【剑指Offer 58】翻转单词顺序,Java解密。
LeetCode 剑指Offer 75道练习题 文章目录 剑指Offer:翻转单词顺序示例:限制:解题思路:剑指Offer:翻转单词顺序 【题目描述】 输入一个英文句子,翻转句子中单词的顺序,但单词内字符的顺序不变。为简单起见,标点符号和普通字母一样处理。例如输入字符串"I am a stu…...
微服务Ribbon-负载均衡原理
目录 一、LoadBalancerIntercepor 二、LoadBalancerClient 三、负载均衡策略IRule 四、总结 上一篇中,我们添加了LoadBalanced注解,即可实现负载均衡功能,这是什么原理呢? SpringCloud底层其实是利用了一个名为Ribbon的组件&…...
如何实现Vue的异步组件?如何在Vue中使用本地存储?什么是Vue的指令模块化?
1、如何实现Vue的异步组件? 在Vue中,可以使用异步组件来加载远程数据,或者在组件的生命周期中执行一些耗时操作。实现异步组件,需要使用Vue的异步组件和Vue的组件系统。 下面是一个基本的示例: <template><…...
《HeadFirst设计模式(第二版)》第六章代码——命令模式
代码文件目录: Command package Chapter6_CommandPattern.Command;/*** Author 竹心* Date 2023/8/6**/public interface Command {public void execute();public void undo();//撤销该指令 }CeilingFan package Chapter6_CommandPattern.ElectricAppliance;/*** …...
JS 原型与继承2
//***-、原型、原型链、构造函数 prototype、 proto_、constructor function Foo(){this.a1} var foo new Foo(); Object.getPrototypeOf(foo);//访问对象原型 效果等同于,foo. proto ,只是更推荐使用 Es6的 Object.getPrototypeof()方式 // construct…...
账号登录相关的一点随笔
最后更新于2023年8月8日 14:25:32 JWT验证: 简单:一个token验证; 前端发来登录信息,后端验证通过后,将token发回前端; 复杂:Access Token Refresh Token验证: 将Access Token和R…...
常见的一些BUG
常见的一些BUG,但实际上在编写代码时,我们应该尽可能避免这些类型的错误: 变量名与函数名冲突: def main(): print("Hello, World!") main 5 print("The value of main is:", main) 函数参数传递错误&…...
ChatGPT在智能社交网络分析和关系挖掘中的应用如何?
智能社交网络分析和关系挖掘是当今信息时代中的重要研究领域,它们通过运用人工智能、机器学习和数据挖掘技术,从社交网络中提取有价值的信息,洞察用户之间的关系和行为模式。ChatGPT作为一种强大的自然语言处理模型,在智能社交网络…...
你不了解的Dictionary和ConcurrentDictionary
最近在做项目时,多线程中使用Dictionary的全局变量时,发现数据并没有存入到Dictionary中,但是程序也没有报错,经过自己的一番排查,发现Dictionary为非线程安全类型,因此我感觉数据没有写进去的原因是多线程…...
c++类模板,嵌套类模板,模板链表,动态数组
c类模板,嵌套类模板,模板链表,动态数组 一.类模板 1.类模板的书写 代码如下 template<typename T>//模板 class CTest {//类 public:T m_a;CTest(const T&a):m_a(a){}void fun1() {cout << typeid(m_a).name() << …...
【Flutter】【基础】CustomPaint 绘画功能,绘制各种图形(二)
CustomPaint 使用实例和代码: 1.canvas.drawColor 绘制背景颜色 class MyPainter1 extends CustomPainter {overridevoid paint(Canvas canvas, Size size) {//绘制背景颜色,整个UI 现在就是红色的canvas.drawColor(Colors.red, BlendMode.srcATop);}…...
YOLOv5修改注意力机制CBAM
直接上干货 CBAM注意力机制是由通道注意力机制(channel)和空间注意力机制(spatial)组成。 传统基于卷积神经网络的注意力机制更多的是关注对通道域的分析,局限于考虑特征图通道之间的作用关系。CBAM从 channel 和 sp…...
计算机网络 网络层 概述
...
算法练习--动态规划 相关
文章目录 走方格的方案 走方格的方案 请计算n*m的棋盘格子(n为横向的格子数,m为竖向的格子数)从棋盘左上角出发沿着边缘线从左上角走到右下角,总共有多少种走法,要求不能走回头路,即:只能往右和…...
(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验
Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...
ubuntu22.04有线网络无法连接,图标也没了
今天突然无法有线网络无法连接任何设备,并且图标都没了 错误案例 往上一顿搜索,试了很多博客都不行,比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动,重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...
C++--string的模拟实现
一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现,其目的是加强对string的底层了解,以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量,…...
