Python-OpenCV中的图像处理-几何变换
Python-OpenCV中的图像处理-几何变换
- 几何变换
- 图像缩放
- 图像平移
- 图像旋转
- 仿射变换
- 透视变换
几何变换
对图像进行各种几个变换,例如移动,旋转,仿射变换等。
图像缩放
- cv2.resize()
- cv2.INTER_AREA
- v2.INTER_CUBIC
- v2.INTER_LINEAR
res = cv2.resize(img, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)
或
height, width = img.shape[:2]
res = cv2.resize(img, (2width, 2height), interpolation=cv2.INTER_CUBIC)
import numpy as np
import cv2# 图像缩放
img = cv2.imread('./resource/image/1.jpg')# 缩放 时推荐使用cv2.INTER_AREA
# 扩展 时推荐使用cv2.INTER_CUBIC(慢) 或 cv2.INTER_LINEAR(默认使用)
# 原图放大两倍
res = cv2.resize(img, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)# 或
#height, width = img.shape[:2]
#res = cv2.resize(img, (2*width, 2*height), interpolation=cv2.INTER_CUBIC)while True:cv2.imshow('res', res)cv2.imshow('img', img)if cv2.waitKey(1)&0xFF == 27:break
cv2.destroyAllWindows()
图像平移
OpenCV提供了使用函数cv2.warpAffine()实现图像平移效果,该函数的语法为
- cv2.warpAffine(src, M, (cols, rows))
- src:输入的源图像
- M:变换矩阵,即平移矩阵,M = [[1, 0, tx], [0, 1, ty]] 其中,tx和ty分别代表在x和y方向上的平移距离。
- (cols, rows):输出图像的大小,即变换后的图像大小
平移就是将对象换一个位置。如果你要沿( x, y)方向移动,移动的距离
是( tx, ty),你可以以下面的方式构建移动矩阵:
M = [ 1 0 t x 0 1 t y ] M=\left[ \begin{matrix} 1&0&t_x\\ 0 &1 &t_y \end{matrix} \right] M=[1001txty]
import cv2
import numpy as npimg = cv2.imread('./resource/opencv/image/messi5.jpg')# 获取图像的行和列
rows, cols = img.shape[:2]# 定义平移矩阵,沿着y轴方向向下平移100个像素点
# M = np.float32([[1, 0, 0], [0, 1, 100]])# 定义平移矩阵,沿着x轴方向向右平移50个像素点,沿着y轴方向向下平移100个像素点
M = np.float32([[1, 0, -50], [0 ,1, 100]])# 执行平移操作
result = cv2.warpAffine(img, M, (cols, rows))# 显示结果图像
cv2.imshow('result', result)
cv2.waitKey(0)
图像旋转
- cv2.getRotationMatrix2D()
对一个图像旋转角度 θ, 需要使用到下面形式的旋转矩阵:
M = [ c o s θ − s i n θ s i n θ c o s θ ] M=\left[ \begin{matrix} cosθ&-sinθ \\sinθ&cosθ \end{matrix} \right] M=[cosθsinθ−sinθcosθ]
import numpy as np
import cv2# 图像旋转 缩放
img = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)
rows,cols = img.shape# 这里的第一个参数为旋转中心,第二个为旋转角度,第三个为旋转后的缩放因子
# 可以通过设置旋转中心,缩放因子,以及窗口大小来防止旋转后超出边界的问题
M = cv2.getRotationMatrix2D((cols/2, rows/2), 45, 0.6)
print(M)# 第三个参数是输出图像的尺寸中心
dst = cv2.warpAffine(img, M, (2*cols, 2*rows))
while (1):cv2.imshow('img', dst)if cv2.waitKey(1)&0xFF == 27:break
cv2.destroyAllWindows()
dst = cv2.warpAffine(img, M, (1cols, 1rows))
仿射变换
在仿射变换中,原图中所有的平行线在结果图像中同样平行。为了创建这个矩阵我们需要从原图像中找到三个点以及他们在输出图像中的位置。然后cv2.getAffineTransform 会创建一个 2x3 的矩阵,最后这个矩阵会被传给函数 cv2.warpAffine。
import numpy as np
import cv2
from matplotlib import pyplot as plt# 仿射变换
img = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_COLOR)
rows, cols, ch = img.shape
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGBA)pts1 = np.float32([[50,50],[200,50],[50,200]])
pts2 = np.float32([[10,100], [200,50], [100,250]])# 行,列,通道数
M = cv2.getAffineTransform(pts1, pts2)
dts = cv2.warpAffine(img, M, (cols, rows))plt.subplot(121), plt.imshow(img), plt.title('Input')
plt.subplot(122), plt.imshow(dts), plt.title('Output')
plt.show()
透视变换
对于视角变换,我们需要一个 3x3 变换矩阵。在变换前后直线还是直线。要构建这个变换矩阵,你需要在输入图像上找 4 个点,以及他们在输出图像上对应的位置。这四个点中的任意三个都不能共线。这个变换矩阵可以有函数cv2.getPerspectiveTransform() 构建。然后把这个矩阵传给函数cv2.warpPerspective()
import numpy as np
import cv2
from matplotlib import pyplot as plt# 透视变换
img = cv2.imread('./resource/opencv/image/sudoku.png', cv2.IMREAD_COLOR)
rows,cols,ch = img.shape
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)pts1 = np.float32([[60,80],[368,65],[28,387],[389,390]])
pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]])M = cv2.getPerspectiveTransform(pts1, pts2)
dst = cv2.warpPerspective(img, M, (400, 400))plt.subplot(121), plt.imshow(img), plt.title('Input')
plt.subplot(122), plt.imshow(dst), plt.title('Output')
plt.show()
相关文章:

Python-OpenCV中的图像处理-几何变换
Python-OpenCV中的图像处理-几何变换 几何变换图像缩放图像平移图像旋转仿射变换透视变换 几何变换 对图像进行各种几个变换,例如移动,旋转,仿射变换等。 图像缩放 cv2.resize() cv2.INTER_AREAv2.INTER_CUBICv2.INTER_LINEAR res cv2.r…...

前端JavaScript入门-day08-正则表达式
(创作不易,感谢有你,你的支持,就是我前行的最大动力,如果看完对你有帮助,请留下您的足迹) 目录 介绍 语法 元字符 边界符 量词 字符类: 修饰符 介绍 正则表达式(Regular …...

ML类CFAR检测器在不同环境中检测性能的分析
摘要:该文是楼主翻阅书籍以及一些论文总结出来的关于ML(均值)类CFAR检测器在不同环境中的性能对比,以及优缺点的总结,可以帮助大家面对不同情形如何选择CFAR问题。由于楼主见识短浅,文中难免出现不足之处,望各位指出。…...
element-ui 路由动态加载功能
第一步 自定义默认的静态路由像登陆和首页这些一般开放的页面,主要代码如下: const router new Router({routes: [{path: "/login/index",component: () > import("../components/page/login/index.vue"),meta: {title: "登录",k…...

(学习笔记-进程管理)进程调度
进程都希望自己能够占用CPU进行工作,那么这涉及到前面说过的进程上下文切换。 一旦操作系统把进程切换到运行状态,也就意味着该进程占用着CPU在执行,但是操作系统把进程切换到其他状态的时候,就不能在CPU中执行了,于是…...
十分钟python入门 正则表达式
正则常见的三种功能,它们分别是:校验数据的有效性、查找符合要求的文本以及对文本进行切割和替换等操作。 1.元字符 所谓元字符就是指那些在正则表达式中具有特殊意义的专用字符 元字符大致分成这几类:表示单个特殊字符的,表示…...
关于数据拷贝赋值方法
系列文章目录 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 TODO:写完再整理 文章目录 系列文章目录前言一、关于数据拷贝赋值方法1、最基础数据类型的变量才可以直接拷贝赋值2、自己定义的大数据类型或者时类实例化的对象不可以直接拷贝赋值1、方法一:…...

Effective Java笔记(32)谨慎并用泛型和可变参数
故事的小黄花 从出生那年就飘着 童年的荡秋千 随记忆一直晃到现在 可变参数( vararg ) 方法(详见第 53 条)和泛型都是在 Java 5 中就有了,因此你可能会期待它们可以良好地相互作用;遗憾的是,它们…...

数据结构——双向链表
双向链表实质上是在单向链表的基础上加上了一个指针指向后面地址 单向链表请参考http://t.csdn.cn/3Gxk9 物理结构 首先我们看一下两种链表的物理结构 我们可以看到:双向在单向基础上加入了一个指向上一个地址的指针,如此操作我们便可以向数组一样操作…...
Declare 关键字在 TypeScript 中如何正确使用?
如果您编写 TypeScript 代码的时间足够长,您就已经看到过declare关键字。但它有什么作用,为什么要使用它? declare关键字告诉 TypeScript 编译器存在一个对象并且可以在代码中使用。 本文解释了声明关键字并通过代码示例展示了不同的用例。 定义 在 TypeScript 中,decl…...

ChatGPT将会成为强者的外挂?—— 提高学习能力
目录 前言 一、提高学习力 🧑💻 1. 快速找到需要的知识 2. 组合自己的知识体系 3. 内化知识技能 二、提问能力❗ 三、思维、创新能力 🌟 1. 批判性思维 1.1 八大基本结构进行批判性提问 1.2 苏格拉底的提问分类方法 2. 结构化思…...
AUTOSAR规范与ECU软件开发(基础篇)1.3 车用控制器软件标准(从OSEK到AUTOSAR)
目录 AUTOSAR的前世与今生 1.1~1.3篇幅小结 AUTOSAR的前世与今生 为了迎合汽车高精度、 高实时性、 高可靠性控制的需要, 嵌入式实时操作系统(Real Time Operating System, RTOS) 逐渐在ECU中使用。与此同时, 由于不同实时操作系统间应用程序接口(Application Programmi…...

R语言5_安装Giotto
环境Ubuntu22/20, R4.1. 已开启科学上网。 第一步,更新服务器环境,进入终端,键入如下命令, apt-get update apt install libcurl4-openssl-dev libssl-dev libxml2-dev libcairo2-dev libgtk-3-dev libhdf5-dev libmagick9-dev …...
centos按用户保存历史执行命令
centos7 按用户记录历史命令的方法 在/etc/profile文件中添加以下代码。 添加完成后执行source /etc/profile 用户重新登录即可发现history被清空了。这时可以去看/usr/share/.history文件夹,该文件夹保存了所有用户每次登录所执行过的的操作记录。 文件路径为 /usr…...
【力扣】61. 旋转链表 <快慢指针>
【力扣】61. 旋转链表(每个节点向右移k个单位) 给你一个链表的头节点 head ,旋转链表,将链表每个节点向右移动 k 个位置。 示例 1: 输入:head [1,2,3,4,5], k 2 输出:[4,5,1,2,3] 示例 2&a…...

编写一个指令(v-focus2end)使输入框文本在聚焦时焦点在文本最后一个位置
项目反馈输入框内容比较多时候,让鼠标光标在最后一个位置,心想什么奇葩需求,后面试了一下,是有点影响体验,于是就有了下面的效果,我目前的项目都是若依的架子,用的是vue2版本。vue3的朋友想要使…...

Virtualbox设置访问外网以及主机和虚拟机互通
参考链接 1、设置使虚拟机访问外网。选中虚拟机,右击选择“设置”。 2、在设置中选择“网络”,然后点击“网卡1”,选择“网络地址转换(NAT)”模式,点击“确定”。 4.此时你的虚拟机就可以访问外网了 5…...
请简述React是什么?React的主要特点有哪些?React中有哪些主要组件?
1、请简述React是什么? React是一个用于构建用户界面的JavaScript库,它由Facebook开发并开源。React的主要特点是其数据驱动和组件化的设计理念。它允许开发者将复杂的界面分解为简单的组件,并将这些组件以数据流的方式组合在一起࿰…...

DevOps最佳实践和工具在本地环境中的概述
引言 最近,我进行了一次网上搜索,以寻找DevOps的概述,尽管有大量的DevOps工具和实践,但我无法找到一个综合的概述。因此,我开始了对DevOps生态系统和最佳实践的梳理,以创建一个整体视图,方便后续研究实践 C…...
kafka和rabbitmq之间的区别以及适用场景
Kafka 和 RabbitMQ 都是流行的消息传递系统,用于实现分布式系统中的消息传递、事件处理和数据流。它们在设计和适用场景上有一些不同,下面详细介绍它们之间的区别和适用场景。 Kafka 特点和优势: 高吞吐量: Kafka 的设计目标是实…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...

从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...