竞赛项目 酒店评价的情感倾向分析
前言
🔥 优质竞赛项目系列,今天要分享的是
酒店评价的情感倾向分析
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
概述
本文基于7K条携程酒店评价数据为文本数据,将其导入到Keras的模型架构然后进行训练出一个可用于实际场所预测情感的模型。
项目所需模块
import tensorflow as tf
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
import tensorflow.keras as keras# 导入jieba分词库
import jieba
import re
数据
数据说明
7000多条携程酒店评论数据,5000多条正向评论,2000多条负向评论。
字段说明
- 评论数目(总体):7766
- 评论数目(正向):5322
- 评论数目(负向):2444
数据处理
# 读取数据
data = pd.read_csv("/home/kesci/input/labelreview5456/ChnSentiCorp_htl_all.csv")
# 查看数据的前5项
data.head()
分词处理
# 去除标点符号和数字
# 要去除标点符号和数字,常用的办法就是使用正则表达式来处理,或者自行编写遍历替换函数# 模式串
patten = r"[!\"#$%&'()*+,-./:;<=>?@[\\\]^_`{|}~—!,。?·¥、《》···【】:" "''\s0-9]+"
re_obj = re.compile(patten)# 替换函数--去除标点符号和数字
def clear(text):return re_obj.sub('', text)# 将正则表达式替换函数应用于每一行
data["review"] = data["review"].apply(clear)
# 查看前5行替换结果data["review"][:5]
采用精简处理,启用HMM(隐式马尔科夫网络)处理
def cut_words(words):return jieba.lcut(words) # 使用lcut分词#apply函数对series的每一行数据进行处理
data["review"] = data["review"].apply(cut_words)
data["review"][:5]
停用词处理
# 使用 中文停用词表 stop_words = "/home/kesci/work/stopwords-master/stopwords.txt"stop_list = [i.strip() for i in open(stop_words, encoding='utf-8').readlines()] #读取停用词列表def remove_stop(words): #移除停用词函数texts = []for word in words: # 遍历词列表里的每一个词if word not in stop_list: # 若不在停用词列表中就将结果追加至texts列表中texts.append(word)return textsdata['review'] = data['review'].apply(remove_stop)# 查看前5行data["review"][:5]
样本均衡
data["label"].value_counts().plot(kind = 'bar')
plt.text(0, 6000, str(data["label"].value_counts()[1]),ha = 'center', va = 'top')
plt.text(1, 3000, str(data["label"].value_counts()[0]),ha = 'center', va = 'top')
plt.ylim(0, 6500)
plt.title('正负样本的个数')
plt.show()
从柱状图可以看出,该数据集共7766条数据,其中正样本(label = 1)共有5322条,负样本(label = 0)共有2444条,没有重复数据
显然样本存在严重的不均衡问题,这里考虑两种样本均衡的策略
(1)欠采样,正负样本各2000条,一共4000条
(2)过采样,正负样本各3000条,一共6000条
为减少计算量和对比两种均衡策略的效果,这里采用先把整体数据进行处理,再做样本均衡采样
def get_balanced_words(size,positive_comment=data[data['label'] == 1],negtive_comment=data[data['label'] == 0]):word_size = size // 2#获取正负评论数num_pos = positive_comment.shape[0]num_neg = negtive_comment.shape[0]# 当 正(负)品论数中<采样数量/2 时,进行上采样,否则都是下采样;# 其中pandas的sample方法里的repalce参数代表是否进行上采样,默认不进行balanced_words = pd.concat([positive_comment.sample(word_size,replace=num_pos < word_size,random_state=0),negtive_comment.sample(word_size,replace=num_neg < word_size,random_state=0)])# 打印样本个数print('样本总数:', balanced_words.shape[0])print('正样本数:', balanced_words[data['label'] == 1].shape[0])print('负样本数:', balanced_words[data['label'] == 0].shape[0])print('')return balanced_words
建立多层感知机分类模型
可以看到共有四层:平坦层共有1600个神经元,平坦层在这里可以看作为输入层。隐藏层共有256个神经;输出层只有1个神经元。全部必须训练的超参数有474113个,通常超参数数值越大,代表此模型越复杂,需要更多时间进行训练。
训练模型
网络检测率以及检测结果
input_text = """去之前会有担心,因为疫情,专门打了电话给前台,前台小哥哥好评,耐心回答,打消了我的顾虑,nice!! 看得出有做好防疫情清洁消毒工作,前台登记反复询问,确保出行轨迹安全,体温测量登记,入住好评,选了主题房,设计是我喜欢的.总之下次有需要还是会自住或推荐!!"""predict_review(input_text)result : 正面评价!
至此,对携程酒店评价的情感倾向分析,以建立一个简单的多层感知器模型结束,由于文章所限,后续的模型优化以及与其他深度学习的模型的比较就不进行简述,有兴趣的同学可以留意学长后续文章。谢谢各位同学!
最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:

竞赛项目 酒店评价的情感倾向分析
前言 🔥 优质竞赛项目系列,今天要分享的是 酒店评价的情感倾向分析 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/post…...

加载并绘制时间域内的心电图信号,并实施Q因子为1的陷波滤波器以去除50 Hz频率研究(Matlab代码实现)
💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…...

瑞数信息《2023 API安全趋势报告》重磅发布: API攻击持续走高,Bots武器更聪明
如今API作为连接服务和传输数据的重要通道,已成为数字时代的新型基础设施,但随之而来的安全问题也日益凸显。为了让各个行业更好地应对API安全威胁挑战,瑞数信息作为国内首批具备“云原生API安全能力”认证的专业厂商,近年来持续输…...
HCIA静态路由与动态路由
目录 一、静态路由 定义: 适用环境 二、动态路由 定义: 特点: 动态路由协议: 三、缺点: 1)静态路由缺点: 2)动态路由的缺点: 四、静态路由与动态路由的区别 静态路由: 动态路由: 一、静态路…...

【前端 | CSS】flex布局
基本概念 Flexible模型,通常被称为 flexbox,是一种一维的布局模型。它给 flexbox 的子元素之间提供了强大的空间分布和对齐能力 我们说 flexbox 是一种一维的布局,是因为一个 flexbox 一次只能处理一个维度上的元素布局,一行或者…...
YoloV8优化:感受野注意力卷积运算(RFAConv),效果秒杀CBAM和CA等 | 即插即用系列
💡💡💡本文改进:感受野注意力卷积运算(RFAConv),解决卷积块注意力模块(CBAM)和协调注意力模块(CA)只关注空间特征,不能完全解决卷积核参数共享的问题 RFAConv| 亲测在多个数据集能够实现大幅涨点,有的数据集达到3个点以上 💡💡💡Yolov8魔术师,独家首…...

面对AI冲击,技术人才该如何考核?
一天下午,在与知名企业的技术交流会议室里,一位兄弟企业的CTO 小力苦笑着,分享了一个技术招聘的故事: “我们有个高级工程师,为了搞定MySQL三个表Join的问题,搞了一整天都研究不出来。结果他尝试将表结构扔…...

放弃51单片机,直接学习STM32开发可能会面临的问题
学习51单片机并非仅仅是为了学习51本身,而是通过它学习一种方法,即如何仅仅依靠Datasheet和例程来学习一种新的芯片。51单片机相对较简单,是这个过程中最容易上手的选择,而AVR单片机则更为复杂。虽然您已经学习了大约十天的51单片…...

windows安装git并初始化
git官网下载地址: https://git-scm.com/downloads 安装步骤,一直点击下一步即可 git初始化 1、用户签名 git config --global user.email 2734542837qq.com#设置全局用户邮箱git config --global user.name "zoujiahao"# 设置全局用户使用人…...
SpringBoot集成websocket(3)|(websocket调用websocket采用回调方式实现数据互传)
SpringBoot集成websocket(3)|(websocket调用websocket采用回调方式实现数据互传) 文章目录 SpringBoot集成websocket(3)|(websocket调用websocket采用回调方式实现数据互传)[TOC] 前…...

基于Doris实时数据开发的一些注意事项
300万字!全网最全大数据学习面试社区等你来! 最近Doris的发展大家是有目共睹的。例如冷热分离等新特性的持续增加。使得Doris在易用和成本上都有大幅提升。 基于Doris的一些存储实时数仓在越来越多的场景中开始有一些实践。大家也看到了这种方案频繁出现…...

竞赛项目 深度学习疲劳驾驶检测 opencv python
文章目录 0 前言1 课题背景2 实现目标3 当前市面上疲劳驾驶检测的方法4 相关数据集5 基于头部姿态的驾驶疲劳检测5.1 如何确定疲劳状态5.2 算法步骤5.3 打瞌睡判断 6 基于CNN与SVM的疲劳检测方法6.1 网络结构6.2 疲劳图像分类训练6.3 训练结果 7 最后 0 前言 🔥 优…...

20.4 HTML 表单
1. form表单 <form>标签: 用于创建一个表单, 通过表单, 用户可以向网站提交数据. 表单可以包含文本输入字段, 复选框, 单选按钮, 下拉列表, 提交按钮等等. 当用户提交表单时, 表单数据会发送到服务器进行处理.action属性: 应指向一个能够处理表单数据的服务器端脚本或UR…...

Linux——基础IO(1)
目录 0. 文件先前理解 1. C文件接口 1.1 写文件 1.2 读文件 1.3 输出信息到显示器 1.4 总结 and stdin & stdout & stderr 2. 系统调用文件I/O 2.1 系统接口使用示例 2.2 接口介绍 2.3 open函数返回值 3. 文件描述符fd及重定向 3.1 0 & 1 & 2 3.2…...

MFC第二十七天 通过动态链表实现游戏角色动态增加、WM_ERASEBKGND背景刷新的原理、RegisterClass注册窗口与框架程序开发
文章目录 通过动态链表实现游戏角色动态增加CMemoryDC.hCFlashDlg.hCFlashDlg.cpp WM_ERASEBKGND背景刷新的原理RegisterClass注册窗口与框架程序开发CFrameRegister 通过动态链表实现游戏角色动态增加 CMemoryDC.h #pragma once#include "resource.h"/*内存DC类简介…...
Debezium系列之:基于内容路由实现把数据库表中的数据按照数据类型分发到不同的topic
Debezium系列之:基于内容路由实现把数据库表中的数据按照数据类型分发到不同的topic 一、需求背景二、创建表三、插入、更新、删除数据四、核心参数和实现技术五、查看分发的Topic六、消费Topic数据七、总结和延展一、需求背景 一张表中存有各个超市门店的订单信息,例如超市门…...
苹果账号被禁用怎么办?
苹果账号被禁用怎么办? 转载:苹果账号被禁用怎么办? 当我们使用苹果手机登录App Store时,有时会遇到账号被禁用的提示。总结下来, 账号被禁用的原因可能有以下几种: 禁用的原因 1.在不同的设备上登录Ap…...
文章一:快速上手Git - 从零到一:Git版本控制入门指南
开始本篇文章之前先推荐一个好用的学习工具,AIRIght,借助于AI助手工具,学习事半功倍。欢迎访问:http://airight.fun/。 概述 在软件开发和团队协作中,版本控制是一项至关重要的技术。Git作为现代开发者最喜爱的版本控…...

【用unity实现100个游戏之6】制作一个战旗自走棋类游戏(附源码)
文章目录 前言导入素材开始1. 设置瓦片间隙2. 放置全图瓦片3. 美化瓦片地图4. 添加树木障碍物5. 设定不同的排序图层6. 瓦片交互6. 瓦片交互优化6. 瓦片是否允许角色7. 添加角色8. 新增游戏管理脚本9. 角色移动范围逻辑10. 角色移动范围可视化11. 角色移动12. 重置瓦片颜色12. …...

W5100S-EVB-PICO 做TCP Server进行回环测试(六)
前言 上一章我们用W5100S-EVB-PICO开发板做TCP 客户端连接服务器进行数据回环测试,那么本章将用开发板做TCP服务器来进行数据回环测试。 TCP是什么?什么是TCP Server?能干什么? TCP (Transmission Control Protocol) 是一种面向连…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...

Linux中《基础IO》详细介绍
目录 理解"文件"狭义理解广义理解文件操作的归类认知系统角度文件类别 回顾C文件接口打开文件写文件读文件稍作修改,实现简单cat命令 输出信息到显示器,你有哪些方法stdin & stdout & stderr打开文件的方式 系统⽂件I/O⼀种传递标志位…...
上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式
简介 在我的 QT/C 开发工作中,合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式:工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...