当前位置: 首页 > news >正文

【二叉树】1-5,理论基础、前中后序遍历的递归法和迭代法、层序遍历

理论基础、前中后序遍历的递归法和迭代法、层序遍历

  • 1,二叉树的种类
    • 满二叉树
    • 完全二叉树
    • 二叉搜索树
    • 平衡二叉搜索树
  • 2,存储方式
    • 链式存储
    • 线式存储
  • 3,二叉树的遍历
    • 深度优先搜索
      • 前序遍历(递归法、迭代法)
      • 中序遍历(递归法、迭代法)
      • 后序遍历(递归法、迭代法)
    • 广度优先搜索
      • 层次遍历(迭代法、递归法)
  • 4,二叉树的定义

1,二叉树的种类

满二叉树

除最后一层无任何子节点外,每一层上的所有结点都有两个子结点的二叉树。
请添加图片描述

完全二叉树

一个深度为k的有n个节点的二叉树,对树中的节点按从上至下、从左到右的顺序进行编号,如果编号为i(1≤i≤n)的结点与满二叉树中编号为i的结点在二叉树中的位置相同,则这棵二叉树称为完全二叉树。
请添加图片描述

二叉搜索树

二叉搜索树(Binary Search Tree),又名二叉排序树(Binary Sort Tree)。

二叉搜索树是具有有以下性质的二叉树:

若左子树不为空,则左子树上所有节点的值均小于或等于它的根节点的值。
若右子树不为空,则右子树上所有节点的值均大于或等于它的根节点的值。
左、右子树也分别为二叉搜索树。
请添加图片描述

平衡二叉搜索树

平衡二叉搜索树的任何结点的左子树和右子树高度最多相差1。,并且左右两个子树都是一棵平衡二叉树。
请添加图片描述

容器map、set、multimap、multiset的底层原理都是平衡二叉搜索树
所以map中key和set中的元素都是有序的

unordered map和unordered set的底层原理为哈希表

2,存储方式

分为链式存储和线式存储

链式存储

链式存储方式就用指针
请添加图片描述

线式存储

(用的少了解即可)

顺序存储的方式就是用数组。
请添加图片描述

线式存储时,有一点i,他的左孩子下标为2i+1,他的右孩子下标为2i+2

3,二叉树的遍历

分为深度优先搜索和广度优先搜索

深度优先搜索

分为前序遍历、中序遍历、后续遍历
请添加图片描述
写法可以分为递归法和迭代法

递归的底层原理是栈

确定递归函数的参数和返回值
确定终止条件
确定单层递归的逻辑

迭代法就是模拟递归的过程,因为递归的底层原理为栈,所以迭代法用栈展示

面试简单的可能需要写出简单的非递归代码

前序遍历(递归法、迭代法)

中左右
递归法:

class Solution {
public:void traversal(TreeNode* cur, vector<int>& vec) {if (cur == NULL) return;vec.push_back(cur->val);    // 中traversal(cur->left, vec);  // 左traversal(cur->right, vec); // 右}vector<int> preorderTraversal(TreeNode* root) {vector<int> result;traversal(root, result);return result;}
};

迭代法:
因为模拟栈的过程,前序遍历是中左右,但是栈是先进后出的,所以入栈顺序为右左中

访问顺序和处理顺序相同(后续遍历也是如此,所以稍作改动就可以变为后续遍历)

class Solution {
public:vector<int> preorderTraversal(TreeNode* root) {stack<TreeNode*> st;vector<int> result;if (root == NULL) return result;st.push(root);while (!st.empty()) {TreeNode* node = st.top();                       // 中st.pop();result.push_back(node->val);if (node->right) st.push(node->right);           // 右(空节点不入栈)if (node->left) st.push(node->left);             // 左(空节点不入栈)}return result;}
};

中序遍历(递归法、迭代法)

左中右
递归法:

void traversal(TreeNode* cur, vector<int>& vec) {if (cur == NULL) return;traversal(cur->left, vec);  // 左vec.push_back(cur->val);    // 中traversal(cur->right, vec); // 右
}

迭代法:
访问顺序和处理顺序不同,所以代码和前后续遍历不同

class Solution {
public:vector<int> inorderTraversal(TreeNode* root) {vector<int> result;stack<TreeNode*> st;TreeNode* cur = root;while (cur != NULL || !st.empty()) {if (cur != NULL) { // 指针来访问节点,访问到最底层st.push(cur); // 将访问的节点放进栈cur = cur->left;                // 左} else {cur = st.top(); // 从栈里弹出的数据,就是要处理的数据(放进result数组里的数据)st.pop();result.push_back(cur->val);     // 中cur = cur->right;               // 右}}return result;}
};

后序遍历(递归法、迭代法)

左右中
递归法:

void traversal(TreeNode* cur, vector<int>& vec) {if (cur == NULL) return;traversal(cur->left, vec);  // 左traversal(cur->right, vec); // 右vec.push_back(cur->val);    // 中
}

迭代法:
访问顺序和处理顺序相同

class Solution {
public:vector<int> postorderTraversal(TreeNode* root) {stack<TreeNode*> st;vector<int> result;if (root == NULL) return result;st.push(root);while (!st.empty()) {TreeNode* node = st.top();st.pop();result.push_back(node->val);if (node->left) st.push(node->left); // 相对于前序遍历,这更改一下入栈顺序 (空节点不入栈)if (node->right) st.push(node->right); // 空节点不入栈}reverse(result.begin(), result.end()); // 将结果反转之后就是左右中的顺序了return result;}
};

广度优先搜索

层次遍历(迭代法、递归法)

借助一个队列,保存每一层的节点

队列记录当前层的元素个数,弹出时按队列里储存的个数弹出

迭代法:

class Solution {
public:vector<vector<int>> levelOrder(TreeNode* root) {queue<TreeNode*> que;if (root != NULL) que.push(root);vector<vector<int>> result;while (!que.empty()) {int size = que.size();vector<int> vec;// 这里一定要使用固定大小size,不要使用que.size(),因为que.size是不断变化的for (int i = 0; i < size; i++) {TreeNode* node = que.front();que.pop();vec.push_back(node->val);if (node->left) que.push(node->left);if (node->right) que.push(node->right);}result.push_back(vec);}return result;}
};

递归法:

class Solution {
public:void order(TreeNode* cur, vector<vector<int>>& result, int depth){if (cur == nullptr) return;if (result.size() == depth) result.push_back(vector<int>());result[depth].push_back(cur->val);order(cur->left, result, depth + 1);order(cur->right, result, depth + 1);}vector<vector<int>> levelOrder(TreeNode* root) {vector<vector<int>> result;int depth = 0;order(root, result, depth);return result;}
};

4,二叉树的定义

struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

相关文章:

【二叉树】1-5,理论基础、前中后序遍历的递归法和迭代法、层序遍历

理论基础、前中后序遍历的递归法和迭代法、层序遍历 1&#xff0c;二叉树的种类满二叉树完全二叉树二叉搜索树平衡二叉搜索树 2&#xff0c;存储方式链式存储线式存储 3&#xff0c;二叉树的遍历深度优先搜索前序遍历&#xff08;递归法、迭代法&#xff09;中序遍历&#xff0…...

Mybatis-plus动态条件查询QueryWrapper的使用

Mybatis-plus动态条件查询QueryWrapper的使用 一&#xff1a;queryWrapper介绍 queryWrapper是mybatis plus中实现查询的对象封装操作类&#xff0c;可以封装sql对象&#xff0c;包括where条件&#xff0c;order by排序&#xff0c;select哪些字段等等&#xff0c;他的层级关…...

Redis安装配置远程连接

1. yum 安装 redis&#xff1a; 直接使用命令&#xff0c;将 redis 安装到 linux 服务器中&#xff1a; yum -y install redis 2. 启动 redis&#xff1a; 在 xshell 里&#xff0c;可以使用下面命令&#xff0c;以后台方式启动 redis&#xff1a; [rootVM-8-17-centos /]…...

pycharm中配置conda

安装好pycharm和conda后&#xff0c;打开pycharm&#xff1a;...

matlab解常微分方程常用数值解法1:前向欧拉法和改进的欧拉法

总结和记录一下matlab求解常微分方程常用的数值解法&#xff0c;本文先从欧拉法和改进的欧拉法讲起。 d x d t f ( x , t ) , x ( t 0 ) x 0 \frac{d x}{d t}f(x, t), \quad x\left(t_{0}\right)x_{0} dtdx​f(x,t),x(t0​)x0​ 1. 前向欧拉法 前向欧拉法使用了泰勒展开的第…...

SQL | 计算字段

7-创建计算字段 7.1-计算字段 存储在数据库中的数据一般不是我们所需要的字段格式&#xff0c; 需要公司名称&#xff0c;同时也需要公司地址&#xff0c;但是这两个数据存储在不同的列中。 省&#xff0c;市&#xff0c;县和邮政编码存储在不同的列中&#xff0c;但是当我们…...

leetcode做题笔记67

给你两个二进制字符串 a 和 b &#xff0c;以二进制字符串的形式返回它们的和。 思路一&#xff1a;模拟题意 void reserve(char* s) {int len strlen(s);for (int i 0; i < len / 2; i) {char t s[i];s[i] s[len - i - 1], s[len - i - 1] t;} }char* addBinary(cha…...

fastadmin 自定义搜索分类和时间范围

1.分类搜索&#xff0c;分类信息获取----php 2.对应html页面&#xff0c;页面底部加搜索提交代码&#xff08;这里需要注意&#xff1a;红框内容&#xff09; 图上代码----方便直接复制使用 <script id"countrySearch" type"text/html"><!--form…...

Oracle Data Redaction与Data Pump

如果表定义了Redaction Policy&#xff0c;导出时数据会脱敏吗&#xff1f;本文解答这个问题。 按照Oracle文档Advanced Security Guide第13章&#xff0c;13.6.5的Tutorial&#xff0c;假设表HR.jobs定义了Redaction Policy。 假设HR用户被授予了访问目录对象的权限&#xf…...

设计模式(6)原型模式

一、介绍 Java中自带的原型模式是clone()方法。该方法是Object的方法&#xff0c;native类型。他的作用就是将对象的在内存的那一块内存数据一字不差地再复制一个。我们写简单类的时候只需要实现Cloneable接口&#xff0c;然后调用Object::clone方法就可实现克隆功能。这样实现…...

pywinauto结合selenium实现文件上传

简介 PC端-Windows上的元素识别可用viewWizard工具 PC端-Windows上的元素操作可用pywinauto库 浏览器上网页的元素识别可用selenium 安装 pip installer pywinauto 使用须知 pywinauto官方文档 确定app的可访问技术 1、win32 API(backend=“win32”) 一般是MFC、VB6、VC…...

【Java多线程学习7】Java线程池技术

线程池技术 一、什么是线程池 线程池顾名思义是管理一组线程的池子。当有任务要处理时&#xff0c;直接从线程池中获取线程来处理&#xff0c;处理完之后线程不会立即销毁&#xff0c;而是等待下一个任务。 二、为什么要使用线程池? 线程池的作用&#xff1f; 1、降低资源…...

VMware虚拟机NAT模式Ubuntu无法上网解决方案

发现只要NAT模式&#xff0c;ping地址时就报网络不可达&#xff0c;且右上方网络图标消失&#xff0c;但是外部USB网络设备又只能在NAT模式下使用。。。 博主的解决方案如下&#xff1a; 按WinR键入services.msc&#xff0c; 找到VMware DHCP Service、VMware NAT Service和V…...

Linux中无法忘记mysql密码处理办法

找到/etc/my.cnf或者/etc/mysql/my.cnf文件 添加下面两行代码&#xff0c;取消密码验证 [mysqld] skip-grant-table使用命令登录&#xff1a;mysql -u root -p&#xff0c;回车&#xff0c;回车使用sql语句来修改密码 mysql>use mysql; mysql>update user set password…...

vue 使用 el-upload 上传文件(自动上传/手动上传)

vue 使用 el-upload 上传文件(自动上传/手动上传) 文章目录 1. 自动上传(选择完文件后,调用axios上传)2.手动上传 1. 自动上传(选择完文件后,调用axios上传) <el-uploadref"upload1"action:multiple"false"accept".xlsx,.csv,.xls":auto-upl…...

服务器遭受攻击之后的常见思路

哈喽大家好&#xff0c;我是咸鱼 不知道大家有没有看过这么一部电影&#xff1a; 这部电影讲述了男主是一个电脑极客&#xff0c;在计算机方面有着不可思议的天赋&#xff0c;男主所在的黑客组织凭借着超高的黑客技术去入侵各种国家机构的系统&#xff0c;并引起了德国秘密警察…...

C语言学习笔记 使用vscode外部console出现闪退-12

前言 在使用vscode的外部console时&#xff0c;会出现闪退现象&#xff0c;这是因为程序运行结束后&#xff0c;系统自动退出了终端&#xff08;终端机制决定的&#xff09;。我们可以在C程序结束后&#xff0c;使用system函数来暂停DOS终端系统&#xff0c;这样就可以完整地看…...

从Spring源码看Spring如何解决循环引用的问题

Spring如何解决循环引用的问题 关于循环引用&#xff0c;首先说一个结论&#xff1a; Spring能够解决的情况为&#xff1a;两个对象都是单实例、且通过set方法进行注入。 两个对象都是单实例&#xff0c;通过构造方法进行注入&#xff0c;Spring不能进行循环引用问题&#x…...

03 - 通过git log可以查看版本演变历史

通过git log可以查看版本演变历史 主要包括&#xff1a; commit 哈希id提交的Author信息提交的日期和时间commit info信息 git log本人常用&#xff0c;显示简洁&#xff1a; git log --oneline当log条数很多的时候&#xff0c;可以如下指定显示的数量&#xff1a; git log…...

【图论】单源最短路

算法提高课笔记。&#xff08;本篇还未更新完… 目录 单源最短路的建图方式例题热浪题意思路代码 信使题意思路代码 香甜的黄油题意思路代码 最小花费题意思路代码 最优乘车题意思路代码 昂贵的聘礼题意思路代码 单源最短路的建图方式 最短路问题可以分为以下两类&#xff1a…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...