当前位置: 首页 > news >正文

Flink-串讲面试题

1. 概念

 

有状态的流式计算框架

可以处理源源不断的实时数据,数据以event为单位,就是一条数据。

2. 开发流程

先获取执行环境env,然后添加source数据源,转换成datastream,然后使用各种算子进行计算,使用sink算子指定输出的目的地,最后调用execute方法执行。

3. flink运行模式

  1. standalone
  2. yarn
  3. k8s

4. flink部署模式(yarn)

  1. session
    1. 先启动集群,再提交job到集群
  2. per-job
    1. 一个job启动一个集群
  3. aplication
    1. 一个job启动一个集群

per-job和application区别:

  • 提交代码位置不一样,单作业模式的main方法在客户端执行,应用模式的main方法在JobManager执行

应用模式是生产上主要提交模式,单作业模式和应用模式都是一个job启动一个集群,所以可以做到资源隔离,而会话模式是多个job分享一个集群,适合小作业共享。

5. 运行时架构

  1. Client
    1. 解析代码,提交作业
  2. JobManager

    1. 管理节点,任务切分分配

    2. dispatcher:将job传递给Jobmaster

    3. resourManager:申请资源

    4. JobMaster:切分任务

    5. Checkpointcoordinator:向数据源注入barrier

  3. TaskManager

    1. 执行任务计算 

    2. 资源最小单位slot ,算子就是我们task任务

6. 基本概念

6.1.task和subtask区别?

一个算子(map,filter,flatmap)就是一个task

算子并行子任务就是subtask 

6.2 task和slot的关系

一个task的子任务不能在一个slot中执行

一个slot中可以执行不同算子的subtask

6.3 并行度的优先级

算子 > 全局env  > 提交命令行  >   配置文件

6.4 算子链路的合并

多个subtask组成一个大的subtask

条件:

  1. 前后算子的并行度一致
  2. forward(数据分区规则)
  3. subtask必须在一个共享槽(.slotSharingGroup("default"), 在一个slot槽中执行)

算子合并优点和缺点 ?

  1. 优点
    1. 节省数据传输IO
  2. 缺点
    1. 如果有subtask计算逻辑复杂会有抢占资源问题

如何禁用算子链?

env.disableOperatorChaining()

如何设置不同的共享槽?

.slotSharingGroup("aa")

6.5 流图转化

产生发送做了什么事情
StreamGraphClientClient代码解析
JobGraphClientJM算子链的合并
ExecutionGraphJMTM并行子任务显示
物理执行图

6.6 per-job模式提交作业流程

  1. 客户端提交代码,解析参数 生成StreamGraph
  2. 由StreamGraph生成jobGraph,主要是做了算子链合并
  3. 封装参数 提交给集群yarn 的RM
  4. yarn找一个NM,启动JM
  5. 启动dispatcher,RM,Jobmaster,生成executionGraph
  6. 向JM的RM申请资源,然后去找Yarn的RM申请资源,创建TM启动slot 
  7. 注册slot,分配任务

7. API

7.1 source

kafkasource(算子状态,保存offset) 

7.2 transform

  1. 单流:map,flatmap,filter
  2. keyby :sum, min, max ,reduce 
  3. 侧输出流
  4. 物理分流算子:shuffle,forwawrd,rebalance(默认),rescale
  5. union(类型要求一致)  connect(可以不一致)

7.3 sink

kafkasink,dorissink, jdbcsink, filesink 

7.4 join

  1. API
    1. windowjoin
    2. interval join :两条实时流去根据范围关联,如果一些迟到特别久的数据关联不上
  2. SQL
    1. 常规join(比如left join ,支持回撤流)
    2. lookupjoin:读取外部系统数据,可以缓存, 适用于数据量小,而且基本不变化的表(比如字典表)
    3. interval join
    4. window tvf函数 :累积函数,滚动,滑动

8. 时间语义

  1. 事件时间:业务数据推动,获取数据中时间戳,推进时间
  2. 处理时间:获取操作系统时间
  3. 摄入时间:数据进入到flink集群的系统时间
  • 共同点
    • 时间不能倒退,单调递增 
  • 区分
    • (处理时间)速度稳定,不能停滞 
    • (事件时间)速度不稳定,可能会停滞

9. WaterMark

9.1 你对watermakr的理解

逻辑时钟,单调递增,解决乱序迟到问题

9.2 水位线传递

  • 一对多:广播水位线
  • 多对一:取最小
  • 多对多:先广播,再取最小

场景题:上游算子发生数据倾斜,某一个subtask没有数据,水位线无法抬升怎么办?

解决办法:
            调用withIdleness()方法,如果某一个subtask没有数据,超过了空闲等待时间,那么放弃使用这个subtask的水位线。

9.3 迟到数据问题如何解决?

  1. 设置乱序时间:针对于迟到时间短的数据
  2. 窗口延迟关闭:迟到中级
  3. 侧输出流:迟到特别长

9.4 水位线注入规则

当前最大时间戳 - 乱序时间  - 1ms

10. 窗口

概念:无界流切分为有界流, 集合中是一个个的桶

10.1 分类

  1. 滑动
  2. 滚动
  3. 会话:按照时间间隔划分窗口

10.2 四大组成

  1. assigner:分配器
  2. trigger :触发窗口计算
  3. evictor:驱逐器,清除窗口数据
  4. 聚合逻辑:增量聚合, 全量聚合(reduce    aggregate)

场景问题:表的字段有mid  timestamp  price   ,要求算当前累积GMV, 5分钟输出一次

解决方案:

  1. 第1种方案:windowtvf函数 Cumulate Windows
  2. 第2种方案:用滚动窗口 1天  ,实现ContinuousEventTimeTrigger,自定义每5分钟输出一次

10.3 核心概念

划分(数据属于哪个窗口)

开一个5s滚动窗口  数据是3s  会落到哪个窗口:0-5   3-8 

结论:窗口的向下取整
                timestamp - (timestamp - offset) % windowSize

生命周期

创建:属于窗口第一条数据到来

销毁:事件时间 >= 窗口长度 +允许迟到时间

左闭右开

        endtime -1ms

10.4 设置乱序时间 和窗口延迟关闭时间 有什么区别?

5s滚动窗口   乱序时间设置2s   销毁时间5s  (7s数据过来时候,时间推进到5s)

5s滚动窗口   窗口延迟关闭2s   销毁时间7s   (7s数据过来时候,时间推进到7s)

结论:

设置乱序时间,并不会影响窗口销毁时间,影响时间推进规则,窗口延迟关闭时间影响窗口的关闭时间。

举个栗子:

10s滚动窗口,设置乱序时间5s,窗口延迟关闭时间5s 

窗口销毁:水位线15s时候销毁, 数据携带20s及以上过来触发窗口销毁

11. 状态

概念:用户定义的一些变量 

状态数据是交由Flink托管的,考虑程序数据的恢复 

11.1 分类

  1. 算子状态:每个subtask
    1. list:恢复状态时候轮询
    2. unionlist:广播
  2. 键控状态:每个key去维护的状态
    1. value  map  list  reduce  aggregate 

11.2 状态后端

本地远端
hashmapTM堆内存hdfs
rocksdbrocksdbhdfs

使用场景:rocksdb存储数据量级别比hashmap大

11.3 状态后端场景选择

企业中大状态场景选用的rocksdb  ,大状态场景优化

举个例子:

用户新老访客修复  1000w用户    1k      ≈  10G

rocksdb支持:增量检查点  、 本地恢复 、预定义选项

11.4 TTL

状态的过期时间是由哪个类设置的:

StateTttlConfig

12. 容错机制

12.1 端到端一致性 (kafka  flink   kafka)

源头:offset可重发

Flink:checkpoint

sink:事务(2pc 预写日志) 幂等 

12.2 checkpoint流程

  1. JM的checkpoint协调器发送命令startcheckpint开始
  2. 定期向数据源注入barrier (特殊事件,不会跳过数据向下游发送)
  3. barrier随数据流过每个subtask 
  4. barrier到每个算子,将本地状态快照到hdfs文件系统,快照完之后acks应答(barrier之前的数据已经进入kafka,预提交)
  5. JM中协调器收到所有算子的acks,标志所有快照做完,向算子分发消息
  6. 正式提交kafka

12.3 barrier

  1. 精确一次性
    1. barrier对齐:等待所有barrier到来,快照,等待的时候将数据缓存不处理
    2. 1.11版本,barrier不对齐,状态数据和缓存数据同时快照
  2. 至少一次
    1. barrier对齐:等待所有barrier到来,快照,数据直接向下游传递,不阻塞在缓存中
    2. 问题:出现意外恢复,状态中有重复数据问题

12.4 savepoint 和checkpoint区别

  1. checkpoint:自动帮我做
  2. savepoint手动:配置文件指定savepoint的路径,取消任务触发保存点停止

场景:程序升级 (算子增加,算子减少)
            增加uid

13. FlinkSql

Flinksql如何转化成底层的api?

使用calcite解析语法树

sql转化  ast语法树   逻辑执行    物理执行     底层api执行 

14. Flink生产经验

14.1 提交任务脚本

bin/flink run 
        -d   后台运行 
        -D   并行度     5
        -D   JM内存     1~4 G   
        -D   TM内存     4~8 G 
        -D   TM的slot个数  3(1~4)  
        -c  主类
        ./jar包
        

如果并行设置为5个,slot个数设置为3个,那么会启动2个TM

14.2 TM内存模型

  1. JVM
    1. 元空间
    2. 执行开销
  2. FLink内存
    1. 堆内:框架内存,task计算内存(分配,剩余内存)
    2. 堆外:框架内存,task计算内存(0)  网络内存(组件之间交互,算子缓存区)  托管内存(状态数据)

14.3 Flink部署多少台机器

FLink充当客户端, ds的worker节点都需要部署 

如果是streampark:需要部署一台

15. Flink和sparkstreaming区别 /Flink优点

Flinksparkstreaming
模型流式微批次
时间丰富处理时间
乱序解决不能解决
窗口多灵活窗口长度必须是批次整数倍
容错机制没有
状态没有

16. Flink的Interval Join的实现原理?Join不上的怎么办?

底层调用的是keyby + connect ,处理逻辑:

(1)判断是否迟到(迟到就不处理了,直接return)

(2)每条流都存了一个Map类型的状态(key是时间戳,value是List存数据)

(3)任一条流,来了一条数据,遍历对方的map状态,能匹配上就发往join方法

(4)使用定时器,超过有效时间范围,会删除对应Map中的数据(不是clear,是remove)

Interval join不会处理join不上的数据,如果需要没join上的数据,可以用 coGroup+join算子实现,或者直接使用flinksql里的left join或right join语法。

17. Flink的keyby怎么实现的分区?分区、分组的区别是什么?

分组和分区在 Flink 中具有不同的含义和作用:

分区:分区(Partitioning)是将数据流划分为多个子集,这些子集可以在不同的任务实例上进行处理,以实现数据的并行处理。

数据具体去往哪个分区,是通过指定的 key 值先进行一次 hash 再进行一次 murmurHash,通过上述计算得到的值再与并行度进行相应的计算得到。

分组:分组(Grouping)是将具有相同键值的数据元素归类到一起,以便进行后续操作(如聚合、窗口计算等)。key 值相同的数据将进入同一个分组中。

注意:数据如果具有相同的 key 将一定去往同一个分组和分区,但是同一分区中的数据不一定属于同一组。

相关文章:

Flink-串讲面试题

1. 概念 有状态的流式计算框架 可以处理源源不断的实时数据,数据以event为单位,就是一条数据。 2. 开发流程 先获取执行环境env,然后添加source数据源,转换成datastream,然后使用各种算子进行计算,使用s…...

如何培养对技术的热爱

这篇博文主要针对计算机专业相关的同学,对于理工科专业的同学有一定的借鉴意义,对于其他专业的同学,还请自行取舍。 背景 初学计算机,可能并不是每个人都能对其产生兴趣,更不要说从其中获得快乐。对于如何培养兴趣&a…...

Vue响应式数据的原理

在 vue2 的响应式中,存在着添加属性、删除属性、以及通过下标修改数组,但页面不会自动更新的问题。而这些问题在 vue3 中都得以解决。 vue3 采用了 proxy 代理,用于拦截对象中任意属性的变化,包括:属性的读写、属性的…...

pytest fixture 用于teardown工作

fixture通过scope参数控制setup级别,setup作为用例之前前的操作,用例执行完之后那肯定也有teardown操作。这里用到fixture的teardown操作并不是独立的函数,用yield关键字呼唤teardown操作。 举个例子: 输出: 说明&…...

39 printf 的输出到设备层的调试

前言 在前面 printf 的调试 我们只是调试到了 glibc 调用系统调用, 封装了参数 stdout, 带输出的字符缓冲, 以及待输出字符长度 然后内核这边 只是到了 write 的系统调用, 并未向下细看 我们这里 稍微向下 细追一下, 看看 到达设备层面 这里是怎么具体的 impl 的 测试用例…...

数字普惠金融、数字创新与经济增长—基于省级面板数据的实证考察(2011-2021年)

参照陈啸(2023)的做法,本对来自经济问题《数字普惠金融、数字创新与经济增长——基于省级面板数据的实证考察》一文中的基准回归部分进行复刻。数字普惠金融、数字创新已经成为驱动经济高质量发展的关键。利用省级面板数据,构建固…...

控制renderQueue解决NGUI与Unity3D物体渲染顺序问题

NGUI与Unity3D物体渲染顺序问题,做过UI的各位应该都遇到过。主要指的是UI与Unity制作的特效、3D人物等一同显示时的层次问题。 由于UI与特效等都是以transparent方式渲染,而Unity与NGUI在管理同是透明物体的render queue时实际上互相没有感知&#xff0…...

概率论与数理统计:第二、三章:一维~n维随机变量及其分布

文章目录 Ch2. 一维随机变量及其分布1.一维随机变量1.随机变量2.分布函数 F ( x ) F(x) F(x)(1)定义(2)分布函数的性质 (充要条件)(3)分布函数的应用——求概率3.最大最小值函数 2.一维离散型随机变量及其概率分布(分布律)3.一维连续型随机变量及其概率分布(概率密度)4.一般类型…...

BOLT- 识别和优化热门的基本块

在BOLT中,识别和优化热门的基本块之所以关键,是因为BOLT的主要目标是优化程序以更好地利用硬件特性,特别是指令缓存(ICache)。以下是BOLT如何识别和优化热门基本块的流程: 收集性能数据: BOLT开始的时候并不…...

Golang 中的 time 包详解(四):函数详解

在日常开发过程中,会频繁遇到对时间进行操作的场景,使用 Golang 中的 time 包可以很方便地实现对时间的相关操作。接下来的几篇文章会详细讲解 time 包,本文讲解一下 time 包中的函数。 func Now() Time 返回当前的系统时间。 package mai…...

【前端 | CSS】5种经典布局

页面布局是样式开发的第一步,也是 CSS 最重要的功能之一。 常用的页面布局,其实就那么几个。下面我会介绍5个经典布局,只要掌握了它们,就能应对绝大多数常规页面。 这几个布局都是自适应的,自动适配桌面设备和移动设备…...

腾讯云宣布VPC网络架构重磅升级,可毫秒级感知网络故障并实现自愈

8月11日,腾讯云宣布VPC(Virtual Private Cloud,云私有网络)架构重磅升级。新架构采用多项腾讯核心自研技术,能够支撑用户构建业界最大 300万节点超大规模单VPC网络,并将转发性能最大提升至业界领先的200Gbp…...

vue 路由页面跳转

从index.vue跳转到data.vue index.vue <el-table-column label"客户数" align"center" :show-overflow-tooltip"true"><template slot-scope"scope"><router-link :to"/system/enterprise-data/index/ scope.ro…...

Vue toRefs:在Vue中不失去响应式的情况下解构属性

Vue toRefs&#xff1a;在Vue中不失去响应式的情况下解构属性 文章目录 Vue toRefs&#xff1a;在Vue中不失去响应式的情况下解构属性什么是响应式&#xff1f;解构Props的挑战使用toRefs保持响应式结论 在Vue开发中&#xff0c;我们经常会在组件之间传递数据。这时候&#xff…...

自定义element-plus的弹框样式

项目中弹框使用频繁,需要统一样式风格,此组件可以自定义弹框的头部样式和内容 一、文件结构如下: 二、自定义myDialog组件 需求&#xff1a; 1.自定义弹框头部背景样式和文字 2.自定义弹框内容 3.基本业务流程框架 components/myDialog/index.vue完整代码&#xff1a; &…...

Linux:iptables防火墙

目录 绪论 1、防火墙 1.1 保护范围 1.2 网络协议划分 1.3 协议&#xff1a;tcp 1.4 四表 1.5 五链 1.6 iptables的规则 1.7 匹配顺序 流入本机&#xff1a;prerouting ------->iuput---------->用户进程(httpd服务)------请求--------响应--------->数据要返…...

MongoDB文档-进阶使用-spring-boot整合使用MongoDB---MongoTemplate完成增删改查

传送门&#xff1a; MongoDB文档--基本概念_一单成的博客-CSDN博客 MongoDB文档--基本安装-linux安装&#xff08;mongodb环境搭建&#xff09;-docker安装&#xff08;挂载数据卷&#xff09;-以及详细版本对比_一单成的博客-CSDN博客 MongoDB文档--基本安装-linux安装&…...

设计模式十四:责任链模式(Chain of Responsibility Pattern)

责任链模式&#xff08;Chain of Responsibility Pattern&#xff09;是一种行为设计模式&#xff0c;它允许你将请求沿着处理者链进行传递&#xff0c;直到有一个处理者能够处理该请求。 在责任链模式中&#xff0c;多个处理者对象被连接成一个链。当接收到一个请求时&#xf…...

将商城项目放到docker-centos7中

1、docker pull centos:7 2、docker run -d -it --privileged 仓库名称/shopcentos:1.1 /usr/sbin/init 注意&#xff1a; /usr/sbin/init 必须加&#xff0c;否则没法使用systemctl启动mysql 3、安装mysql教程 安装msyql教程&#xff1a;https://blog.csdn.net/davice_li…...

C# Winform 自动获取 软件版本号

C# Winform如何自动获取版本号 方案一 缺点是不适配&#xff0c;clickones发布的版本 public static string GetVersion() {try {return System.Deployment.Application.ApplicationDeployment.CurrentDeployment.CurrentVersion.ToString();}catch{return System.Ref…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

篇章二 论坛系统——系统设计

目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...

负载均衡器》》LVS、Nginx、HAproxy 区别

虚拟主机 先4&#xff0c;后7...

路由基础-路由表

本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中&#xff0c;往往存在多个不同的IP网段&#xff0c;数据在不同的IP网段之间交互是需要借助三层设备的&#xff0c;这些设备具备路由能力&#xff0c;能够实现数据的跨网段转发。 路由是数据通信网络中最基…...

OPENCV图形计算面积、弧长API讲解(1)

一.OPENCV图形面积、弧长计算的API介绍 之前我们已经把图形轮廓的检测、画框等功能讲解了一遍。那今天我们主要结合轮廓检测的API去计算图形的面积&#xff0c;这些面积可以是矩形、圆形等等。图形面积计算和弧长计算常用于车辆识别、桥梁识别等重要功能&#xff0c;常用的API…...