【博客692】grafana如何解决step动态变化时可能出现range duration小于step
grafana如何解决step动态变化时可能出现range duration小于step
1、grafana中的step和resolution
grafana中的 “step”
grafana本身是没有提供step参数的,因为仪表盘根据查询数据区间以及仪表盘线条宽度等,对于不同查询,相同的step并不能很好的发挥作用,所以step是动态计算的
所以在Grafana中并没有直接提供step参数,而是这两个参数:min step和resolution
min step: min step故名思义设定的是step的最小值,设置方式如下:

resolution: 老版本是resolution参数,8.5以后都版本去掉了,改为了一组可以限制数据点的数量从而实现分辨率:
参考:https://github.com/grafana/grafana/issues/48081
新老版本设置resolution的不同方法:
-
老版本Resolution选项:则可以控制Grafana自身渲染的数据量。例如,如果Resolution的值为1/10,Grafana会将Prometeus返回的10个样本数据合并成一个点。因此Resolution越小可视化的精确性越高,反之,可视化的精度越低。
-
新版本:Max data points选项来控制绝对最大获取点。如果我们将最大值设置为 500,它只会影响以大于 500 像素宽度渲染的面板(例如,面板大小 1,000 将获取 1/2 点,面板大小 2,000 将获取 1/4)
如何查看实际发起访问的step:

如何修改参数以改变step:

新老版本的差别:

grafana重要内置变量:$__interval
场景:
rate()的range duration不能小于step,但是grafana并没有可以指定step的,那么把range duration给固定值的化在编辑图标的时候就会有问题,因为step是根据图表属性动态算出来的,就可能出现range duration小于step,导致数据异常
解决方法:
你可以使用Grafana提供的内置变量$__interval,它代表的Grafana就是计算出来的step的值。比如这样就能够将range duration和step保持一致了
更多内置变量:
https://grafana.com/docs/grafana/latest/dashboards/variables/add-template-variables/#global-variables
相关文章:
【博客692】grafana如何解决step动态变化时可能出现range duration小于step
grafana如何解决step动态变化时可能出现range duration小于step 1、grafana中的step和resolution grafana中的 “step” grafana本身是没有提供step参数的,因为仪表盘根据查询数据区间以及仪表盘线条宽度等,对于不同查询,相同的step并不能…...
eNSP:ibgp的破水平切割练习
实验要求: 拓扑展示: 命令操作: R1: <Huawei>sys [Huawei]sys r1 [r1]int g 0/0/1 [r1-GigabitEthernet0/0/1]ip add 12.1.1.1 24 [r1-GigabitEthernet0/0/1]int lo0 [r1-LoopBack0]ip add 1.1.1.1 24 [r1-LoopBack0]osp…...
maven是什么?安装+配置
目录 1.什么是maven? 1.2.maven的核心功能是什么? 2.Maven安装配置 2.1Maven的安装 2.2Maven环境配置 1.配置 MAVEN_HOME ,变量值就是你的 maven 安装的路径(bin 目录之前一级目录) 2.将MAVEN_HOME 添加到Path系…...
基于长短期神经网络LSTM的多分类代码
目录 背影 摘要 LSTM的基本定义 LSTM实现的步骤 基于长短期神经网络LSTM的股票预测 MATALB编程实现,附有代码:基于长短期神经网络LSTM的多分类代码,基于LSTM的多分类预测-深度学习文档类资源-CSDN文库 https://download.csdn.net/download/abc991835105/88184779 效果图 结果…...
利用爬虫爬取图片并保存
1 问题 在工作中,有时会遇到需要相当多的图片资源,可是如何才能在短时间内获得大量的图片资源呢? 2 方法 我们知道,网页中每一张图片都是一个连接,所以我们提出利用爬虫爬取网页图片并下载保存下来。 首先通过网络搜索…...
设计模式之Bridge模式的C++实现
目录 1、Bridge模式的提出 2、Bridge模式的定义 3、Bridge模式总结 4、需求描述 5、多继承方式实现 6、使用Bridge设计模式实现 1、Bridge模式的提出 在软件功能模块设计中,如果类的实现功能划分不清晰,使得继承得到的子类往往是随着需求的变化&am…...
springboot异步任务
在Service类声明一个注解Async作为异步方法的标识 package com.qf.sping09test.service;import org.springframework.scheduling.annotation.Async; import org.springframework.stereotype.Service;Service public class AsyncService {//告诉spring这是一个异步的方法Asyncp…...
Flutter父宽度自适应子控件的宽度
需求: 控件随着金币进行自适应宽度 image.png 步骤: 1、Container不设置宽度,需要设置约束padding; 2、文本使用Flexible形式; Container(height: 24.dp,padding: EdgeInsetsDirectional.only(start: 8.dp, end: 5.d…...
什么是 API 安全?学习如何防止攻击和保护数据
随着 API 技术的普及,API 安全成为了一个越来越重要的问题。本文将介绍什么是 API 安全,以及目前 API 面临的安全问题和相应的解决方案。 什么是 API 安全 API 安全是指保护 API 免受恶意攻击和滥用的安全措施。API 安全通常包括以下几个方面࿱…...
简述 TCP 和 UDP 的区别以及优缺点和使用场景?
一、TCP与UDP区别总结: 1、TCP面向连接(如打电话要先拨号建立连接);UDP是无连接的,即发送数据之前不需要建立连接 2、TCP提供可靠的服务。也就是说,通过TCP连接传送的数据,无差错,不丢失&…...
react进阶
react-virtualized的高阶组件,Autosize可以使屏幕适配。使用render-props模式来获取到AutoSizer组件暴露的width和height属性。JSON.parse(JSON.stringify())不适用于有undefined的数据。 深拷贝的使用,不能使用在有undefined的数据中。有直接过滤undefi…...
使用windows搭建WebDAV服务,并内网穿透公网访问【无公网IP】
文章目录 1. 安装IIS必要WebDav组件2. 客户端测试3. 使用cpolar内网穿透,将WebDav服务暴露在公网3.1 打开Web-UI管理界面3.2 创建隧道3.3 查看在线隧道列表3.4 浏览器访问测试 4. 安装Raidrive客户端4.1 连接WebDav服务器4.2 连接成功4.2 连接成功 1. Linux(centos8…...
科技感响应式管理系统后台登录页ui设计html模板
做了一个科技感的后台管理系统登录页设计,并且尝试用响应式布局把前端html写了出来,发现并没有现象中的那么容易,chrome等标准浏览器都显示的挺好,但IE11下面却出现了很多错位,兼容起来还是挺费劲的,真心不…...
Lombok的使用及注解含义
文章目录 一、简介二、如何使用2.1、在IDEA中安装Lombok插件2.2、添加maven依赖 三、常用注解3.1、Getter / Setter3.2、ToString3.3、NoArgsConstructor / AllArgsConstructor3.4、EqualsAndHashCode3.5、Data3.6、Value3.7、Accessors3.7.1、Accessors(chain true)3.7.2、Ac…...
实时通信应用的开发:Vue.js、Spring Boot 和 WebSocket 整合实践
目录 1. 什么是webSocket 2. webSocket可以用来做什么? 3. webSocket协议 4. 服务器端 5. 客户端 6. 测试通讯 1. 什么是webSocket WebSocket是一种在单个TCP连接上进行全双工通信的协议。WebSocket使得客户端和服务器之间的数据交换变得更加简单,允许服务…...
【C++】C++异常
文章目录 1. C语言传统处理错误的方式2. C异常的概念3. 异常的使用3.1 异常的抛出和捕获3.2 异常的重新抛出3.3 异常安全3.4 异常规范 4. C标准库的异常体系5. 自定义的异常体系6. 异常的优缺点 1. C语言传统处理错误的方式 C语言传统的错误处理机制有两个: 终止程…...
学生成绩管理系统V2.0
某班有最多不超过30人(具体人数由键盘输入)参加某门课程的考试,参考前面章节的“学生成绩管理系统V1.0”,用一维数组和函数指针作函数参数编程实现如下菜单驱动的学生成绩管理系统,其中每位同学的学号和成绩等数据可以…...
【C++】开源:tinyxml2解析库配置使用
😏★,:.☆( ̄▽ ̄)/$:.★ 😏 这篇文章主要介绍tinyxml2解析库配置使用。 无专精则不能成,无涉猎则不能通。——梁启超 欢迎来到我的博客,一起学习,共同进步。 喜欢的朋友可以关注一下,…...
如何使用webpack打包一个库library,使用webpack打包sdk.
如何使用webpack打包一个库library 如果你需要自己封装一些包给别人使用,那么可以参考以下方法 初始化库 mkdir library cd library npm init -y经过以上步骤后会生成一个library文件夹,里面包含一个package.json文件。然后简单修改为如下所示: {&qu…...
项目一:基于stm32的阿里云智慧消防监控系统
若该文为原创文章,转载请注明原文出处。 Hi,大家好,我是忆枫,今天向大家介绍一个单片机项目。 一、简介 智慧消防监控系统,是用于检测火灾,温度,烟雾的监控系统。以 stm32单片机为核心外加 MQ…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...
